Similarity and Modeling in Science and Engineering
暫譯: 科學與工程中的相似性與建模

Josef Kuneš

  • 出版商: Cambridge
  • 出版日期: 2014-05-09
  • 售價: $4,470
  • 貴賓價: 9.5$4,247
  • 語言: 英文
  • 頁數: 460
  • 裝訂: Paperback
  • ISBN: 190734389X
  • ISBN-13: 9781907343896
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

The present text sets itself in relief to other titles on the subject in that it addresses the means and methodologies versus a narrow specific-task oriented approach. Concepts and their developments which evolved to meet the changing needs of applications are addressed. This approach provides the reader with a general tool-box to apply to their specific needs. Two important tools are presented: dimensional analysis and the similarity analysis methods. The fundamental point of view, enabling one to sort all models, is that of information flux between a model and an original expressed by the similarity and abstraction Each chapter includes original examples and applications. In this respect, the models can be divided into several groups. The following models are dealt with separately by chapter; mathematical and physical models, physical analogues, deterministic, stochastic, and cybernetic computer models. The mathematical models are divided into asymptotic and phenomenological models. The phenomenological models, which can also be called experimental, are usually the result of an experiment on an complex object or process. The variable dimensionless quantities contain information about the real state of boundary conditions, parameter (non-linearity) changes, and other factors. With satisfactory measurement accuracy and experimental strategy, such models are highly credible and can be used, for example in control systems.

商品描述(中文翻譯)

本書與其他相關主題的書籍不同之處在於,它著重於方法和技術,而非狹隘的特定任務導向方法。書中探討了為了滿足應用需求變化而發展的概念及其演變。這種方法為讀者提供了一個通用工具箱,以應用於他們的特定需求。書中介紹了兩個重要工具:維度分析(dimensional analysis)和相似性分析方法(similarity analysis methods)。能夠對所有模型進行分類的基本觀點是模型與原始資料之間的信息流(information flux),這由相似性(similarity)和抽象(abstraction)所表達。每一章都包含原創的例子和應用。在這方面,模型可以分為幾個組別。以下模型將在各章中分別處理:數學模型(mathematical models)和物理模型(physical models)、物理類比(physical analogues)、確定性(deterministic)、隨機(stochastic)和控制論計算機模型(cybernetic computer models)。數學模型分為漸近模型(asymptotic models)和現象學模型(phenomenological models)。現象學模型,也可以稱為實驗模型,通常是對複雜物體或過程進行實驗的結果。變量無量綱量(dimensionless quantities)包含有關邊界條件的真實狀態、參數(非線性)變化和其他因素的信息。透過滿意的測量精度和實驗策略,這些模型具有高度的可信度,可以用於例如控制系統等應用。