Markov Random Field Modeling in Image Analysis, 3/e (Hardcover)
暫譯: 影像分析中的馬可夫隨機場模型,第3版 (精裝本)
Stan Z. Li
- 出版商: Springer
- 出版日期: 2009-04-02
- 售價: $6,930
- 貴賓價: 9.5 折 $6,584
- 語言: 英文
- 頁數: 362
- 裝訂: Hardcover
- ISBN: 1848002785
- ISBN-13: 9781848002784
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
$990$891 -
$880$862 -
$450$405 -
$860$731 -
$980$774 -
$299$236 -
$620$484 -
$490$387 -
$1,264Semantics with Applications: An Appetizer (Paperback)
-
$480$408 -
$600$474 -
$810$640 -
$450$356 -
$680$537 -
$790$672 -
$850$723 -
$880$748 -
$690$587 -
$450$356 -
$950$808 -
$490$382 -
$390$304 -
$550$435 -
$520$411 -
$680$537
商品描述
Markov random field (MRF) theory provides a basis for modeling contextual constraints in visual processing and interpretation. It enables systematic development of optimal vision algorithms when used with optimization principles.
This detailed and thoroughly enhanced third edition presents a comprehensive study / reference to theories, methodologies and recent developments in solving computer vision problems based on MRFs, statistics and optimisation. It treats various problems in low- and high-level computational vision in a systematic and unified way within the MAP-MRF framework. Among the main issues covered are: how to use MRFs to encode contextual constraints that are indispensable to image understanding; how to derive the objective function for the optimal solution to a problem; and how to design computational algorithms for finding an optimal solution.
Easy-to-follow and coherent, the revised edition is accessible, includes the most recent advances, and has new and expanded sections on such topics as:
• Discriminative Random Fields (DRF)
• Strong Random Fields (SRF)
• Spatial-Temporal Models
• Total Variation Models
• Learning MRF for Classification (motivation + DRF)
• Relation to Graphic Models
• Graph Cuts
• Belief Propagation
Features:
• Focuses on the application of Markov random fields to computer vision problems, such as image restoration and edge detection in the low-level domain, and object matching and recognition in the high-level domain
• Presents various vision models in a unified framework, including image restoration and reconstruction, edge and region segmentation, texture, stereo and motion, object matching and recognition, and pose estimation
• Uses a variety of examples to illustrate how to convert a specific vision problem involving uncertainties and constraints into essentially an optimization problem under the MRF setting
• Introduces readers to the basic concepts, important models and various special classes of MRFs on the regular image lattice and MRFs on relational graphs derived from images
• Examines the problems of parameter estimation and function optimization
• Includes an extensive list of references
This broad-ranging and comprehensive volume is an excellent reference for researchers working in computer vision, image processing, statistical pattern recognition and applications of MRFs. It has been class-tested and is suitable as a textbook for advanced courses relating to these areas.
商品描述(中文翻譯)
馬可夫隨機場(Markov random field, MRF)理論為視覺處理和解釋中的上下文約束建模提供了基礎。當與優化原則結合使用時,它能夠系統性地開發最佳視覺演算法。
這本詳細且經過徹底增強的第三版提供了基於MRF、統計學和優化的計算機視覺問題解決理論、方法論和最新發展的綜合研究/參考。它在MAP-MRF框架內以系統化和統一的方式處理低層次和高層次計算視覺中的各種問題。主要涵蓋的議題包括:如何使用MRF編碼對於圖像理解不可或缺的上下文約束;如何推導出問題的最佳解的目標函數;以及如何設計計算演算法以尋找最佳解。
修訂版易於理解且連貫,包含最新的進展,並在以下主題上有新的擴展部分:
• 判別隨機場(Discriminative Random Fields, DRF)
• 強隨機場(Strong Random Fields, SRF)
• 時間空間模型(Spatial-Temporal Models)
• 總變異模型(Total Variation Models)
• 用於分類的MRF學習(動機 + DRF)
• 與圖形模型的關係
• 圖切割(Graph Cuts)
• 信念傳播(Belief Propagation)
特點:
• 專注於馬可夫隨機場在計算機視覺問題中的應用,例如低層次領域的圖像修復和邊緣檢測,以及高層次領域的物體匹配和識別
• 在統一框架中呈現各種視覺模型,包括圖像修復和重建、邊緣和區域分割、紋理、立體和運動、物體匹配和識別,以及姿勢估計
• 使用多種範例說明如何將涉及不確定性和約束的特定視覺問題轉換為MRF設置下的優化問題
• 向讀者介紹基本概念、重要模型以及在常規圖像格上和從圖像衍生的關係圖上的各種特殊類別的MRF
• 檢視參數估計和函數優化的問題
• 包含廣泛的參考文獻列表
這本範圍廣泛且全面的著作是計算機視覺、圖像處理、統計模式識別及MRF應用領域研究人員的優秀參考資料。它經過課堂測試,適合作為與這些領域相關的高級課程的教科書。