The Machine Learning Workshop - Second Edition: Get ready to develop your own high-performance machine learning algorithms with scikit-learn
暫譯: 機器學習工作坊(第二版):準備好使用 scikit-learn 開發自己的高效能機器學習演算法
Saleh, Hyatt
- 出版商: Packt Publishing
- 出版日期: 2020-07-21
- 售價: $1,660
- 貴賓價: 9.5 折 $1,577
- 語言: 英文
- 頁數: 286
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1839219068
- ISBN-13: 9781839219061
-
相關分類:
Machine Learning、Algorithms-data-structures
海外代購書籍(需單獨結帳)
相關主題
商品描述
Take a comprehensive and step-by-step approach to understanding machine learning
Key Features
- Discover how to apply the scikit-learn uniform API in all types of machine learning models
- Understand the difference between supervised and unsupervised learning models
- Reinforce your understanding of machine learning concepts by working on real-world examples
Book Description
Machine learning algorithms are an integral part of almost all modern applications. To make the learning process faster and more accurate, you need a tool flexible and powerful enough to help you build machine learning algorithms quickly and easily. With The Machine Learning Workshop, you'll master the scikit-learn library and become proficient in developing clever machine learning algorithms.
The Machine Learning Workshop begins by demonstrating how unsupervised and supervised learning algorithms work by analyzing a real-world dataset of wholesale customers. Once you've got to grips with the basics, you'll develop an artificial neural network using scikit-learn and then improve its performance by fine-tuning hyperparameters. Towards the end of the workshop, you'll study the dataset of a bank's marketing activities and build machine learning models that can list clients who are likely to subscribe to a term deposit. You'll also learn how to compare these models and select the optimal one.
By the end of The Machine Learning Workshop, you'll not only have learned the difference between supervised and unsupervised models and their applications in the real world, but you'll also have developed the skills required to get started with programming your very own machine learning algorithms.
What you will learn
- Understand how to select an algorithm that best fits your dataset and desired outcome
- Explore popular real-world algorithms such as K-means, Mean-Shift, and DBSCAN
- Discover different approaches to solve machine learning classification problems
- Develop neural network structures using the scikit-learn package
- Use the NN algorithm to create models for predicting future outcomes
- Perform error analysis to improve your model's performance
Who this book is for
The Machine Learning Workshop is perfect for machine learning beginners. You will need Python programming experience, though no prior knowledge of scikit-learn and machine learning is necessary.
商品描述(中文翻譯)
全面且逐步理解機器學習的方法
主要特點
- 了解如何在各類機器學習模型中應用 scikit-learn 統一 API
- 理解監督式學習模型與非監督式學習模型之間的差異
- 通過實際案例加強對機器學習概念的理解
書籍描述
機器學習算法是幾乎所有現代應用程序中不可或缺的一部分。為了加快學習過程並提高準確性,您需要一個靈活且強大的工具,幫助您快速輕鬆地構建機器學習算法。在《機器學習工作坊》中,您將掌握 scikit-learn 庫,並熟練開發巧妙的機器學習算法。
《機器學習工作坊》首先通過分析批發客戶的實際數據集來演示非監督式和監督式學習算法的工作原理。一旦您掌握了基本概念,您將使用 scikit-learn 開發一個人工神經網絡,然後通過微調超參數來提高其性能。在工作坊的最後,您將研究一家銀行的市場活動數據集,並構建可以列出可能訂閱定期存款的客戶的機器學習模型。您還將學習如何比較這些模型並選擇最佳模型。
在《機器學習工作坊》結束時,您不僅會學會監督式和非監督式模型之間的差異及其在現實世界中的應用,還將掌握開始編程您自己的機器學習算法所需的技能。
您將學到什麼
- 了解如何選擇最適合您的數據集和期望結果的算法
- 探索流行的實際算法,如 K-means、Mean-Shift 和 DBSCAN
- 發現解決機器學習分類問題的不同方法
- 使用 scikit-learn 套件開發神經網絡結構
- 使用 NN 算法創建預測未來結果的模型
- 執行錯誤分析以改善模型性能
本書適合誰
《機器學習工作坊》非常適合機器學習初學者。您需要具備 Python 編程經驗,但不需要事先了解 scikit-learn 和機器學習。