Deep Reinforcement Learning with Python, 2/e (Paperback)
暫譯: 使用 Python 的深度強化學習(第二版)
Ravichandiran, Sudharsan
- 出版商: Packt Publishing
- 出版日期: 2020-09-30
- 售價: $1,870
- 貴賓價: 9.5 折 $1,777
- 語言: 英文
- 頁數: 760
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1839210680
- ISBN-13: 9781839210686
-
相關分類:
Python、程式語言、Reinforcement、DeepLearning
立即出貨 (庫存=1)
買這商品的人也買了...
-
$653深度學習、優化與識別 (Deep Learning,Optimization and Recognition)
-
$520$442 -
$403無人駕駛:人工智能如何顛覆汽車
-
$417數字濾波器的 MATLAB 與 FPGA 實現 — Altera / Verilog 版, 2/e
-
$1,680Deep Reinforcement Learning Hands-On, 2/e (Paperback)
-
$594$564 -
$454聯邦學習
-
$359$341 -
$500Python 深度學習異常檢測 : 使用 Keras 和 PyTorch
-
$768$730 -
$1,000$850 -
$2,000$1,900 -
$1,000$790 -
$2,080$1,976 -
$305電腦視覺技術
-
$296自動駕駛停車位檢測技術
-
$594$564 -
$352FPGA 時序約束與分析
-
$1,188$1,129 -
$602Intel FPGA 數字信號處理設計 (基礎版)
-
$352人工智能數據處理
-
$828$787 -
$454面向自動駕駛的交通標識視覺感知
-
$254最優化理論與方法
-
$474$450
商品描述
An example-rich guide for beginners to start their reinforcement and deep reinforcement learning journey with state-of-the-art distinct algorithms
Key Features
- Covers a vast spectrum of basic-to-advanced RL algorithms with mathematical explanations of each algorithm
- Learn how to implement algorithms with code by following examples with line-by-line explanations
- Explore the latest RL methodologies such as DDPG, PPO, and the use of expert demonstrations
Book Description
With significant enhancements in the quality and quantity of algorithms in recent years, this second edition of Hands-On Reinforcement Learning with Python has been revamped into an example-rich guide to learning state-of-the-art reinforcement learning (RL) and deep RL algorithms with TensorFlow 2 and the OpenAI Gym toolkit.
In addition to exploring RL basics and foundational concepts such as Bellman equation, Markov decision processes, and dynamic programming algorithms, this second edition dives deep into the full spectrum of value-based, policy-based, and actor-critic RL methods. It explores state-of-the-art algorithms such as DQN, TRPO, PPO and ACKTR, DDPG, TD3, and SAC in depth, demystifying the underlying math and demonstrating implementations through simple code examples.
The book has several new chapters dedicated to new RL techniques, including distributional RL, imitation learning, inverse RL, and meta RL. You will learn to leverage stable baselines, an improvement of OpenAI's baseline library, to effortlessly implement popular RL algorithms. The book concludes with an overview of promising approaches such as meta-learning and imagination augmented agents in research.
By the end, you will become skilled in effectively employing RL and deep RL in your real-world projects.
What you will learn
- Understand core RL concepts including the methodologies, math, and code
- Train an agent to solve Blackjack, FrozenLake, and many other problems using OpenAI Gym
- Train an agent to play Ms Pac-Man using a Deep Q Network
- Learn policy-based, value-based, and actor-critic methods
- Master the math behind DDPG, TD3, TRPO, PPO, and many others
- Explore new avenues such as the distributional RL, meta RL, and inverse RL
- Use Stable Baselines to train an agent to walk and play Atari games
Who this book is for
If you're a machine learning developer with little or no experience with neural networks interested in artificial intelligence and want to learn about reinforcement learning from scratch, this book is for you.
Basic familiarity with linear algebra, calculus, and the Python programming language is required. Some experience with TensorFlow would be a plus.
商品描述(中文翻譯)
一個充滿範例的指南,幫助初學者開始他們的強化學習和深度強化學習之旅,使用最先進的獨特演算法。
主要特點
- 涵蓋從基礎到進階的廣泛強化學習演算法,並對每個演算法進行數學解釋
- 通過逐行解釋的範例學習如何實現演算法
- 探索最新的強化學習方法,如 DDPG、PPO 以及專家示範的使用
書籍描述
隨著近年來演算法質量和數量的顯著提升,《使用 Python 的實作強化學習》第二版已經重新改版,成為一本充滿範例的指南,幫助讀者學習最先進的強化學習(RL)和深度強化學習演算法,使用 TensorFlow 2 和 OpenAI Gym 工具包。
除了探索強化學習的基本概念和基礎概念,如 Bellman 方程、馬可夫決策過程和動態規劃演算法外,第二版深入探討了基於價值、基於策略和 Actor-Critic 的強化學習方法。它深入探討了最先進的演算法,如 DQN、TRPO、PPO 和 ACKTR、DDPG、TD3 和 SAC,揭示其背後的數學原理,並通過簡單的程式碼範例展示實作。
本書有幾個新章節專門介紹新的強化學習技術,包括分佈式強化學習、模仿學習、逆強化學習和元強化學習。您將學會利用 Stable Baselines,這是 OpenAI 的基線庫的改進版本,輕鬆實現流行的強化學習演算法。本書最後概述了一些有前景的方法,如元學習和想像增強代理的研究。
到最後,您將能夠熟練地在實際項目中有效地運用強化學習和深度強化學習。
您將學到的內容
- 理解核心強化學習概念,包括方法論、數學和程式碼
- 訓練代理解決 Blackjack、FrozenLake 和許多其他問題,使用 OpenAI Gym
- 訓練代理使用深度 Q 網路玩 Ms Pac-Man
- 學習基於策略、基於價值和 Actor-Critic 方法
- 精通 DDPG、TD3、TRPO、PPO 等演算法背後的數學
- 探索新的領域,如分佈式強化學習、元強化學習和逆強化學習
- 使用 Stable Baselines 訓練代理走路和玩 Atari 遊戲
本書適合誰
如果您是一位對人工智慧感興趣的機器學習開發者,對神經網路幾乎沒有經驗,並希望從零開始學習強化學習,那麼這本書適合您。
需要對線性代數、微積分和 Python 程式語言有基本的了解。有一些 TensorFlow 的經驗將是加分項。