Python Natural Language Processing Cookbook: Over 50 recipes to understand, analyze, and generate text for implementing language processing tasks
暫譯: Python 自然語言處理食譜:超過 50 種食譜以理解、分析和生成文本以實現語言處理任務
Antic, Zhenya
- 出版商: Packt Publishing
- 出版日期: 2021-03-19
- 定價: $1,980
- 售價: 6.0 折 $1,188
- 語言: 英文
- 頁數: 284
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1838987312
- ISBN-13: 9781838987312
-
相關分類:
Python、程式語言
-
相關翻譯:
Python 自然語言處理實戰 (簡中版)
-
其他版本:
Python Natural Language Processing Cookbook - Second Edition: Over 60 recipes for building powerful NLP solutions using Python and LLM libraries
買這商品的人也買了...
-
$580$568 -
$1,460$1,431
商品描述
Get to grips with solving real-world NLP problems, such as dependency parsing, information extraction, topic modeling, and text data visualization
Key Features:
- Analyze varying complexities of text using popular Python packages such as NLTK, spaCy, sklearn, and gensim
- Implement common and not-so-common linguistic processing tasks using Python libraries
- Overcome the common challenges faced while implementing NLP pipelines
Book Description:
Python is the most widely used language for natural language processing (NLP) thanks to its extensive tools and libraries for analyzing text and extracting computer-usable data. This book will take you through a range of techniques for text processing, from basics such as parsing the parts of speech to complex topics such as topic modeling, text classification, and visualization.
Starting with an overview of NLP, the book presents recipes for dividing text into sentences, stemming and lemmatization, removing stopwords, and parts of speech tagging to help you to prepare your data. You'll then learn ways of extracting and representing grammatical information, such as dependency parsing and anaphora resolution, discover different ways of representing the semantics using bag-of-words, TF-IDF, word embeddings, and BERT, and develop skills for text classification using keywords, SVMs, LSTMs, and other techniques. As you advance, you'll also see how to extract information from text, implement unsupervised and supervised techniques for topic modeling, and perform topic modeling of short texts, such as tweets. Additionally, the book shows you how to develop chatbots using NLTK and Rasa and visualize text data.
By the end of this NLP book, you'll have developed the skills to use a powerful set of tools for text processing.
What You Will Learn:
- Become well-versed with basic and advanced NLP techniques in Python
- Represent grammatical information in text using spaCy, and semantic information using bag-of-words, TF-IDF, and word embeddings
- Perform text classification using different methods, including SVMs and LSTMs
- Explore different techniques for topic modeling such as K-means, LDA, NMF, and BERT
- Work with visualization techniques such as NER and word clouds for different NLP tools
- Build a basic chatbot using NLTK and Rasa
- Extract information from text using regular expression techniques and statistical and deep learning tools
Who this book is for:
This book is for data scientists and professionals who want to learn how to work with text. Intermediate knowledge of Python will help you to make the most out of this book. If you are an NLP practitioner, this book will serve as a code reference when working on your projects.
商品描述(中文翻譯)
掌握解決現實世界自然語言處理(NLP)問題的技巧,例如依賴解析、信息提取、主題建模和文本數據可視化
主要特點:
- 使用流行的 Python 套件如 NLTK、spaCy、sklearn 和 gensim 分析不同複雜度的文本
- 使用 Python 函式庫實現常見和不常見的語言處理任務
- 克服實施 NLP 流程時面臨的常見挑戰
書籍描述:
Python 是自然語言處理(NLP)中最廣泛使用的語言,因為它擁有廣泛的工具和庫來分析文本和提取計算機可用的數據。本書將帶您了解一系列文本處理技術,從基本的詞性解析到複雜的主題建模、文本分類和可視化等主題。
本書首先概述 NLP,然後提供將文本分割成句子、詞幹提取和詞形還原、去除停用詞和詞性標註的配方,以幫助您準備數據。接著,您將學習提取和表示語法信息的方法,例如依賴解析和指代消解,探索使用詞袋模型、TF-IDF、詞嵌入和 BERT 表示語義的不同方法,並發展使用關鍵字、SVM、LSTM 和其他技術進行文本分類的技能。隨著進步,您還將學習如何從文本中提取信息,實施無監督和有監督的主題建模技術,並對短文本(如推文)進行主題建模。此外,本書還將教您如何使用 NLTK 和 Rasa 開發聊天機器人以及可視化文本數據。
到本書結束時,您將掌握使用一套強大工具進行文本處理的技能。
您將學到什麼:
- 熟悉 Python 中的基本和進階 NLP 技術
- 使用 spaCy 表示文本中的語法信息,並使用詞袋模型、TF-IDF 和詞嵌入表示語義信息
- 使用不同的方法進行文本分類,包括 SVM 和 LSTM
- 探索不同的主題建模技術,如 K-means、LDA、NMF 和 BERT
- 使用 NER 和詞雲等可視化技術處理不同的 NLP 工具
- 使用 NLTK 和 Rasa 構建基本聊天機器人
- 使用正則表達式技術和統計及深度學習工具從文本中提取信息
本書適合誰:
本書適合希望學習如何處理文本的數據科學家和專業人士。對 Python 的中級知識將幫助您充分利用本書。如果您是 NLP 實踐者,本書將作為您在項目中工作的代碼參考。