Hands-On Image Generation with TensorFlow: A practical guide to generating images and videos using deep learning
暫譯: 使用 TensorFlow 的實作影像生成:深度學習生成影像和影片的實用指南
Cheong, Soon Yau
- 出版商: Packt Publishing
- 出版日期: 2020-12-24
- 售價: $2,200
- 貴賓價: 9.5 折 $2,090
- 語言: 英文
- 頁數: 306
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1838826785
- ISBN-13: 9781838826789
-
相關分類:
DeepLearning、TensorFlow
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
$1,098Neural Networks and Learning Machines, 3/e (IE-Paperback)
-
$1,225Computer Vision: A Modern Approach, 2/e (IE-Paperback)
-
$403自製編程語言
-
$354$336 -
$352自己動手構造編譯系統:編譯、彙編與鏈接
-
$1,519Fundamentals of Database Systems, 7/e (IE-Paperback)
-
$1,980$1,940 -
$2,300$2,185 -
$480$379 -
$454MATLAB/Simulink 系統模擬
-
$1,280$1,254 -
$430$387 -
$1,380$1,352 -
$1,680$1,646 -
$1,680$1,596 -
$680$646 -
$1,420$1,392 -
$880$748 -
$2,150$2,043 -
$880$695 -
$880$695 -
$880$695 -
$1,440$1,411 -
$880$836 -
$650$507
相關主題
商品描述
Implement various state-of-the-art architectures, such as GANs and autoencoders, for image generation using TensorFlow 2.x from scratch
Key Features
- Understand the different architectures for image generation, including autoencoders and GANs
- Build models that can edit an image of your face, turn photos into paintings, and generate photorealistic images
- Discover how you can build deep neural networks with advanced TensorFlow 2.x features
Book Description
The emerging field of Generative Adversarial Networks (GANs) has made it possible to generate indistinguishable images from existing datasets. With this hands-on book, you'll not only develop image generation skills but also gain a solid understanding of the underlying principles.
Starting with an introduction to the fundamentals of image generation using TensorFlow, this book covers Variational Autoencoders (VAEs) and GANs. You'll discover how to build models for different applications as you get to grips with performing face swaps using deepfakes, neural style transfer, image-to-image translation, turning simple images into photorealistic images, and much more. You'll also understand how and why to construct state-of-the-art deep neural networks using advanced techniques such as spectral normalization and self-attention layer before working with advanced models for face generation and editing. You'll also be introduced to photo restoration, text-to-image synthesis, video retargeting, and neural rendering. Throughout the book, you'll learn to implement models from scratch in TensorFlow 2.x, including PixelCNN, VAE, DCGAN, WGAN, pix2pix, CycleGAN, StyleGAN, GauGAN, and BigGAN.
By the end of this book, you'll be well versed in TensorFlow and be able to implement image generative technologies confidently.
What You Will Learn
- Train on face datasets and use them to explore latent spaces for editing new faces
- Get to grips with swapping faces with deepfakes
- Perform style transfer to convert a photo into a painting
- Build and train pix2pix, CycleGAN, and BicycleGAN for image-to-image translation
- Use iGAN to understand manifold interpolation and GauGAN to turn simple images into photorealistic images
- Become well versed in attention generative models such as SAGAN and BigGAN
- Generate high-resolution photos with Progressive GAN and StyleGAN
Who this book is for
The Hands-On Image Generation with TensorFlow book is for deep learning engineers, practitioners, and researchers who have basic knowledge of convolutional neural networks and want to learn various image generation techniques using TensorFlow 2.x. You'll also find this book useful if you are an image processing professional or computer vision engineer looking to explore state-of-the-art architectures to improve and enhance images and videos. Knowledge of Python and TensorFlow will help you to get the best out of this book.
商品描述(中文翻譯)
從零開始使用 TensorFlow 2.x 實現各種最先進的架構,如 GAN 和自編碼器進行圖像生成
主要特點
- 了解圖像生成的不同架構,包括自編碼器和 GAN
- 構建可以編輯您面部圖像的模型,將照片轉換為畫作,並生成照片真實感的圖像
- 發現如何利用先進的 TensorFlow 2.x 功能構建深度神經網絡
書籍描述
生成對抗網絡(GAN)這一新興領域使得從現有數據集中生成無法區分的圖像成為可能。通過這本實用的書籍,您不僅將發展圖像生成技能,還將深入理解其基本原理。
本書從使用 TensorFlow 進行圖像生成的基本概念開始,涵蓋變分自編碼器(VAE)和 GAN。您將發現如何為不同應用構建模型,並掌握使用深度偽造技術進行面部交換、神經風格轉換、圖像到圖像的轉換、將簡單圖像轉換為照片真實感圖像等技術。您還將了解如何以及為什麼使用先進技術(如光譜正則化和自注意力層)構建最先進的深度神經網絡,然後再處理面部生成和編輯的高級模型。此外,您還將接觸到照片修復、文本到圖像合成、視頻重定向和神經渲染等主題。在整本書中,您將學會在 TensorFlow 2.x 中從零開始實現模型,包括 PixelCNN、VAE、DCGAN、WGAN、pix2pix、CycleGAN、StyleGAN、GauGAN 和 BigGAN。
到本書結束時,您將熟練掌握 TensorFlow,並能自信地實現圖像生成技術。
您將學到什麼
- 在面部數據集上進行訓練,並利用它們探索潛在空間以編輯新面孔
- 掌握使用深度偽造技術進行面部交換
- 執行風格轉換,將照片轉換為畫作
- 構建和訓練 pix2pix、CycleGAN 和 BicycleGAN 進行圖像到圖像的轉換
- 使用 iGAN 理解流形插值,並使用 GauGAN 將簡單圖像轉換為照片真實感圖像
- 熟悉注意力生成模型,如 SAGAN 和 BigGAN
- 使用 Progressive GAN 和 StyleGAN 生成高解析度照片
本書適合誰
《Hands-On Image Generation with TensorFlow》這本書適合具有基本卷積神經網絡知識的深度學習工程師、從業者和研究人員,並希望學習使用 TensorFlow 2.x 的各種圖像生成技術。如果您是圖像處理專業人士或計算機視覺工程師,並希望探索最先進的架構以改善和增強圖像和視頻,這本書也將對您有所幫助。具備 Python 和 TensorFlow 的知識將幫助您充分利用本書。