Supervised Machine Learning with Python
暫譯: 使用 Python 的監督式機器學習

Smith, Taylor

  • 出版商: Packt Publishing
  • 出版日期: 2019-05-24
  • 售價: $1,210
  • 貴賓價: 9.5$1,150
  • 語言: 英文
  • 頁數: 162
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1838825665
  • ISBN-13: 9781838825669
  • 相關分類: Python程式語言Machine Learning
  • 海外代購書籍(需單獨結帳)

商品描述

Supervised machine learning is used in a wide range of sectors (such as finance, online advertising, and analytics) because it allows you to train your system to make pricing predictions, campaign adjustments, customer recommendations, and much more while the system self-adjusts and makes decisions on its own. As a result, it's crucial to know how a machine “learns” under the hood.

This book will guide you through the implementation and nuances of many popular supervised machine learning algorithms while facilitating a deep understanding along the way. You’ll embark on this journey with a quick overview and see how supervised machine learning differs from unsupervised learning. Next, we explore parametric models such as linear and logistic regression, non-parametric methods such as decision trees, and various clustering techniques to facilitate decision-making and predictions. As we proceed, you'll work hands-on with recommender systems, which are widely used by online companies to increase user interaction and enrich shopping potential. Finally, you’ll wrap up with a brief foray into neural networks and transfer learning.

By the end of this book, you’ll be equipped with hands-on techniques and will have gained the practical know-how you need to quickly and powerfully apply algorithms to new problems.

商品描述(中文翻譯)




監督式機器學習被廣泛應用於多個領域(如金融、線上廣告和分析),因為它使您能夠訓練系統進行定價預測、活動調整、客戶推薦等,並且系統能夠自我調整並自主做出決策。因此,了解機器如何在內部「學習」是至關重要的。

本書將引導您實現和理解許多流行的監督式機器學習演算法的細微差別,同時促進深入理解。您將從快速概述開始這段旅程,並了解監督式機器學習與非監督式學習的不同。接下來,我們將探索參數模型,如線性回歸和邏輯回歸,非參數方法,如決策樹,以及各種聚類技術,以促進決策和預測。隨著進展,您將親手操作推薦系統,這些系統被線上公司廣泛使用,以增加用戶互動並豐富購物潛力。最後,您將簡要接觸神經網絡和遷移學習。

在本書結束時,您將掌握實用的技術,並獲得快速而有效地將演算法應用於新問題所需的實踐知識。