Hands-On Mathematics for Deep Learning (Paperback)
暫譯: 深度學習實用數學 (平裝本)

Jay Dawani

  • 出版商: Packt Publishing
  • 出版日期: 2020-06-12
  • 售價: $1,840
  • 貴賓價: 9.5$1,748
  • 語言: 英文
  • 頁數: 364
  • 裝訂: Paperback
  • ISBN: 1838647295
  • ISBN-13: 9781838647292
  • 相關分類: DeepLearning
  • 海外代購書籍(需單獨結帳)

買這商品的人也買了...

商品描述

Key Features

  • Understand linear algebra, calculus, gradient algorithms, and other concepts essential for training deep neural networks
  • Learn the mathematical concepts needed to understand how deep learning models function
  • Use deep learning for solving problems related to vision, image, text, and sequence applications

Book Description

Most programmers and data scientists struggle with mathematics, having either overlooked or forgotten core mathematical concepts. This book uses Python libraries to help you understand the math required to build deep learning (DL) models.

You'll begin by learning about core mathematical and modern computational techniques used to design and implement DL algorithms. This book will cover essential topics, such as linear algebra, eigenvalues and eigenvectors, the singular value decomposition concept, and gradient algorithms, to help you understand how to train deep neural networks. Later chapters focus on important neural networks, such as the linear neural network and multilayer perceptrons, with a primary focus on helping you learn how each model works. As you advance, you will delve into the math used for regularization, multi-layered DL, forward propagation, optimization, and backpropagation techniques to understand what it takes to build full-fledged DL models. Finally, you'll explore CNN, recurrent neural network (RNN), and GAN models and their application.

By the end of this book, you'll have built a strong foundation in neural networks and DL mathematical concepts, which will help you to confidently research and build custom models in DL.

What you will learn

  • Understand the key mathematical concepts for building neural network models
  • Discover core multivariable calculus concepts
  • Improve the performance of deep learning models using optimization techniques
  • Cover optimization algorithms, from basic stochastic gradient descent (SGD) to the advanced Adam optimizer
  • Understand computational graphs and their importance in DL
  • Explore the backpropagation algorithm to reduce output error
  • Cover DL algorithms such as convolutional neural networks (CNNs), sequence models, and generative adversarial networks (GANs)

Who this book is for

This book is for data scientists, machine learning developers, aspiring deep learning developers, or anyone who wants to understand the foundation of deep learning by learning the math behind it. Working knowledge of the Python programming language and machine learning basics is required.

商品描述(中文翻譯)

**主要特點**

- 理解線性代數、微積分、梯度演算法及其他訓練深度神經網絡所需的基本概念
- 學習理解深度學習模型運作所需的數學概念
- 使用深度學習解決與視覺、影像、文本及序列應用相關的問題

**書籍描述**

大多數程式設計師和資料科學家在數學上面臨困難,因為他們可能忽略或忘記了核心數學概念。本書使用 Python 函式庫幫助您理解建立深度學習(DL)模型所需的數學。

您將首先學習設計和實現 DL 演算法所需的核心數學和現代計算技術。本書將涵蓋基本主題,如線性代數、特徵值和特徵向量、奇異值分解概念以及梯度演算法,以幫助您理解如何訓練深度神經網絡。後面的章節將專注於重要的神經網絡,如線性神經網絡和多層感知器,主要目的是幫助您學習每個模型的運作方式。隨著進展,您將深入探討用於正則化、多層 DL、前向傳播、優化和反向傳播技術的數學,以理解建立完整 DL 模型所需的條件。最後,您將探索卷積神經網絡(CNN)、循環神經網絡(RNN)和生成對抗網絡(GAN)模型及其應用。

在本書結束時,您將在神經網絡和 DL 數學概念上建立堅實的基礎,這將幫助您自信地研究和建立自定義的 DL 模型。

**您將學到的內容**

- 理解建立神經網絡模型的關鍵數學概念
- 探索核心的多變量微積分概念
- 使用優化技術提高深度學習模型的性能
- 涵蓋從基本隨機梯度下降(SGD)到進階的 Adam 優化器的優化演算法
- 理解計算圖及其在 DL 中的重要性
- 探索反向傳播演算法以減少輸出誤差
- 涵蓋深度學習演算法,如卷積神經網絡(CNN)、序列模型和生成對抗網絡(GAN)

**本書適合誰**

本書適合資料科學家、機器學習開發者、渴望成為深度學習開發者的人,或任何希望通過學習背後的數學來理解深度學習基礎的人。需要具備 Python 程式語言的工作知識和機器學習基礎。

作者簡介

Jay Dawani is a former professional swimmer turned mathematician and computer scientist. He is also a Forbes 30 Under 30 Fellow. At present, he is the Director of Artificial Intelligence at Geometric Energy Corporation (NATO CAGE) and the CEO of Lemurian Labs - a startup he founded that is developing the next generation of autonomy, intelligent process automation, and driver intelligence. Previously he has also been the technology and R&D advisor to Spacebit Capital. He has spent the last three years researching at the frontiers of AI with a focus on reinforcement learning, open-ended learning, deep learning, quantum machine learning, human-machine interaction, multi-agent and complex systems, and artificial general intelligence.

作者簡介(中文翻譯)

Jay Dawani 是一位前職業游泳選手,現已轉型為數學家和計算機科學家。他也是《福布斯》30位30歲以下精英的成員。目前,他是幾何能源公司(Geometric Energy Corporation,NATO CAGE)的人工智慧總監,以及他創立的初創公司Lemurian Labs的首席執行官,該公司正在開發下一代自主技術、智能流程自動化和駕駛員智能。之前,他還曾擔任Spacebit Capital的技術和研發顧問。在過去三年中,他專注於人工智慧的前沿研究,重點包括強化學習、開放式學習、深度學習、量子機器學習、人機互動、多代理和複雜系統,以及人工通用智能。

目錄大綱

  1. Linear Algebra
  2. Vector Calculus
  3. Probability and Statistics
  4. Optimization
  5. Graph Theory
  6. Linear Neural Networks
  7. Feedforward Neural Networks
  8. Regularization
  9. Convolutional Neural Networks
  10. Recurrent Neural Networks
  11. Attention Mechanisms
  12. Generative Models
  13. Transfer and Meta Learning
  14. Geometric Deep Learning

目錄大綱(中文翻譯)


  1. Linear Algebra

  2. Vector Calculus

  3. Probability and Statistics

  4. Optimization

  5. Graph Theory

  6. Linear Neural Networks

  7. Feedforward Neural Networks

  8. Regularization

  9. Convolutional Neural Networks

  10. Recurrent Neural Networks

  11. Attention Mechanisms

  12. Generative Models

  13. Transfer and Meta Learning

  14. Geometric Deep Learning

最後瀏覽商品 (20)