Deep Learning with R for Beginners
暫譯: 初學者的 R 深度學習指南
Hodnett, Mark, Wiley, Joshua F., Liu, Yuxi (Hayden)
- 出版商: Packt Publishing
- 出版日期: 2019-05-17
- 售價: $1,650
- 貴賓價: 9.5 折 $1,568
- 語言: 英文
- 頁數: 612
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1838642706
- ISBN-13: 9781838642709
-
相關分類:
R 語言、DeepLearning
立即出貨 (庫存=1)
買這商品的人也買了...
-
$1,610$1,530 -
$875Analysis of Biological Networks (Hardcover)
-
$2,340$2,223 -
$600$570 -
$650$585 -
$290$284 -
$480$379 -
$2,530$2,404 -
$1,715Numerical Python: Scientific Computing and Data Science Applications with Numpy, SciPy and Matplotlib Second Edition
-
$450$356 -
$680$537 -
$580$458 -
$690$587 -
$680$537 -
$1,390$1,321 -
$380$342 -
$500$395 -
$2,100$2,058 -
$1,200$948 -
$540$486 -
$540$529 -
$560$437 -
$680$537 -
$580$452 -
$840$798
商品描述
Deep learning finds practical applications in several domains, while R is the preferred language for designing and deploying deep learning models.
This Learning Path introduces you to the basics of deep learning and even teaches you to build a neural network model from scratch. As you make your way through the chapters, you’ll explore deep learning libraries and understand how to create deep learning models for a variety of challenges, right from anomaly detection to recommendation systems. The Learning Path will then help you cover advanced topics, such as generative adversarial networks (GANs), transfer learning, and large-scale deep learning in the cloud, in addition to model optimization, overfitting, and data augmentation. Through real-world projects, you’ll also get up to speed with training convolutional neural networks (CNNs), recurrent neural networks (RNNs), and long short-term memory networks (LSTMs) in R.
By the end of this Learning Path, you’ll be well versed with deep learning and have the skills you need to implement a number of deep learning concepts in your research work or projects.
商品描述(中文翻譯)
深度學習在多個領域中找到了實際應用,而 R 是設計和部署深度學習模型的首選語言。
這條學習路徑將介紹深度學習的基本概念,甚至教你如何從零開始構建神經網絡模型。在你逐章學習的過程中,你將探索深度學習庫,並了解如何為各種挑戰創建深度學習模型,從異常檢測到推薦系統。接下來,這條學習路徑將幫助你涵蓋進階主題,例如生成對抗網絡(GANs)、遷移學習以及雲端的大規模深度學習,還有模型優化、過擬合和數據增強。通過實際項目,你還將熟悉如何在 R 中訓練卷積神經網絡(CNNs)、遞歸神經網絡(RNNs)和長短期記憶網絡(LSTMs)。
在這條學習路徑結束時,你將對深度學習有深入的了解,並具備在你的研究工作或項目中實施多個深度學習概念所需的技能。