Deep Learning with R for Beginners
暫譯: 初學者的 R 深度學習指南

Hodnett, Mark, Wiley, Joshua F., Liu, Yuxi (Hayden)

  • 出版商: Packt Publishing
  • 出版日期: 2019-05-17
  • 售價: $1,650
  • 貴賓價: 9.5$1,568
  • 語言: 英文
  • 頁數: 612
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1838642706
  • ISBN-13: 9781838642709
  • 相關分類: R 語言DeepLearning
  • 立即出貨 (庫存=1)

買這商品的人也買了...

商品描述

Deep learning finds practical applications in several domains, while R is the preferred language for designing and deploying deep learning models.

 

This Learning Path introduces you to the basics of deep learning and even teaches you to build a neural network model from scratch. As you make your way through the chapters, you’ll explore deep learning libraries and understand how to create deep learning models for a variety of challenges, right from anomaly detection to recommendation systems. The Learning Path will then help you cover advanced topics, such as generative adversarial networks (GANs), transfer learning, and large-scale deep learning in the cloud, in addition to model optimization, overfitting, and data augmentation. Through real-world projects, you’ll also get up to speed with training convolutional neural networks (CNNs), recurrent neural networks (RNNs), and long short-term memory networks (LSTMs) in R.

 

By the end of this Learning Path, you’ll be well versed with deep learning and have the skills you need to implement a number of deep learning concepts in your research work or projects.

商品描述(中文翻譯)

深度學習在多個領域中找到了實際應用,而 R 是設計和部署深度學習模型的首選語言。

這條學習路徑將介紹深度學習的基本概念,甚至教你如何從零開始構建神經網絡模型。在你逐章學習的過程中,你將探索深度學習庫,並了解如何為各種挑戰創建深度學習模型,從異常檢測到推薦系統。接下來,這條學習路徑將幫助你涵蓋進階主題,例如生成對抗網絡(GANs)、遷移學習以及雲端的大規模深度學習,還有模型優化、過擬合和數據增強。通過實際項目,你還將熟悉如何在 R 中訓練卷積神經網絡(CNNs)、遞歸神經網絡(RNNs)和長短期記憶網絡(LSTMs)。

在這條學習路徑結束時,你將對深度學習有深入的了解,並具備在你的研究工作或項目中實施多個深度學習概念所需的技能。