Deep Learning with PyTorch 1.x - Second Edition
暫譯: 使用 PyTorch 1.x 的深度學習(第二版)
Mitchell, Laura, K, Sri Yogesh, Subramanian, Vishnu
- 出版商: Packt Publishing
- 出版日期: 2019-11-29
- 定價: $1,360
- 售價: 8.0 折 $1,088
- 語言: 英文
- 頁數: 304
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1838553002
- ISBN-13: 9781838553005
-
相關分類:
DeepLearning
立即出貨 (庫存=1)
買這商品的人也買了...
-
$780$616 -
$880$695 -
$1,880$1,786 -
$750$592 -
$500$390 -
$1,940$1,843 -
$1,670$1,587 -
$1,000$790 -
$1,570$1,492
商品描述
Learn |
|
---|---|
About |
PyTorch is gaining the attention of deep learning researchers and data science professionals due to its accessibility and efficiency, along with the fact that it's more native to the Python way of development. This book will get you up and running with this cutting-edge deep learning library, effectively guiding you through implementing deep learning concepts. In this second edition, you'll learn the fundamental aspects that power modern deep learning, and explore the new features of the PyTorch 1.x library. You'll understand how to solve real-world problems using CNNs, RNNs, and LSTMs, along with discovering state-of-the-art modern deep learning architectures, such as ResNet, DenseNet, and Inception. You'll then focus on applying neural networks to domains such as computer vision and NLP. Later chapters will demonstrate how to build, train, and scale a model with PyTorch and also cover complex neural networks such as GANs and autoencoders for producing text and images. In addition to this, you'll explore GPU computing and how it can be used to perform heavy computations. Finally, you'll learn how to work with deep learning-based architectures for transfer learning and reinforcement learning problems. By the end of this book, you'll be able to confidently and easily implement deep learning applications in PyTorch. |
Features |
|
商品描述(中文翻譯)
學習內容
- 使用神經網絡構建文本分類和語言建模系統
- 使用先進的 CNN 架構實現遷移學習
- 使用深度強化學習技術在 PyTorch 中解決優化問題
- 混合多個模型以形成強大的集成模型
- 通過在 PyTorch 中實現 CNN 架構來構建圖像分類器
- 通過實際案例快速掌握強化學習、GAN、LSTM 和 RNN
關於本書
由於其可及性和效率,並且更符合 Python 的開發方式,PyTorch 正在吸引深度學習研究人員和數據科學專業人士的注意。本書將幫助您快速上手這個尖端的深度學習庫,有效指導您實現深度學習概念。
在本書的第二版中,您將學習驅動現代深度學習的基本方面,並探索 PyTorch 1.x 庫的新功能。您將了解如何使用 CNN、RNN 和 LSTM 解決現實世界中的問題,並發現最先進的現代深度學習架構,如 ResNet、DenseNet 和 Inception。接下來,您將專注於將神經網絡應用於計算機視覺和自然語言處理(NLP)等領域。後面的章節將演示如何使用 PyTorch 構建、訓練和擴展模型,並涵蓋生成對抗網絡(GAN)和自編碼器等複雜神經網絡,以生成文本和圖像。此外,您還將探索 GPU 計算及其在執行重計算中的應用。最後,您將學習如何處理基於深度學習的架構,以解決遷移學習和強化學習問題。
在本書結束時,您將能夠自信且輕鬆地在 PyTorch 中實現深度學習應用。
特色
- 深入了解 PyTorch 框架,學習實現神經網絡架構
- 理解 GPU 計算,以使用 Python 執行重的深度學習計算
- 應用尖端的自然語言處理(NLP)技術來解決文本數據的問題