Advanced Python Programming
暫譯: 進階 Python 程式設計
Lanaro, Dr Gabriele, Nguyen, Quan, Kasampalis, Sakis
- 出版商: Packt Publishing
- 出版日期: 2019-02-22
- 定價: $1,650
- 售價: 6.0 折 $990
- 語言: 英文
- 頁數: 672
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1838551212
- ISBN-13: 9781838551216
-
相關分類:
Python、程式語言
-
其他版本:
Advanced Python Programming : Accelerate your Python programs using proven techniques and design patterns, 2/e (Paperback)
買這商品的人也買了...
-
$880$695 -
$490$382 -
$620$490 -
$780$616 -
$1,200$948 -
$780$616 -
$620$490 -
$580$493 -
$2,280Learning Python, 5/e (Paperback)
-
$1,750$1,663 -
$250Learning hard C# 學習筆記
-
$1,617Deep Learning (Hardcover)
-
$505Python 數據處理 (Data Wrangling with Python)
-
$580$458 -
$620$484 -
$590$389 -
$454C# 程序開發案例課堂
-
$690$538 -
$1,830$1,739 -
$490$382 -
$760VisualC#大學教程(第六版)
-
$450$383 -
$1,060$1,007
相關主題
商品描述
Key Features
- Set up and run distributed algorithms on a cluster using Dask and PySpark
- Master skills to accurately implement concurrency in your code
- Gain practical experience of Python design patterns with real-world examples
Book Description
This Learning Path shows you how to leverage the power of both native and third-party Python libraries for building robust and responsive applications. You will learn about profilers and reactive programming, concurrency and parallelism, as well as tools for making your apps quick and efficient. You will discover how to write code for parallel architectures using TensorFlow and Theano, and use a cluster of computers for large-scale computations using technologies such as Dask and PySpark. With the knowledge of how Python design patterns work, you will be able to clone objects, secure interfaces, dynamically choose algorithms, and accomplish much more in high performance computing.
By the end of this Learning Path, you will have the skills and confidence to build engaging models that quickly offer efficient solutions to your problems.
This Learning Path includes content from the following Packt products:
- Python High Performance - Second Edition by Gabriele Lanaro
- Mastering Concurrency in Python by Quan Nguyen
- Mastering Python Design Patterns by Sakis Kasampalis
What you will learn
- Use NumPy and pandas to import and manipulate datasets
- Achieve native performance with Cython and Numba
- Write asynchronous code using asyncio and RxPy
- Design highly scalable programs with application scaffolding
- Explore abstract methods to maintain data consistency
- Clone objects using the prototype pattern
- Use the adapter pattern to make incompatible interfaces compatible
- Employ the strategy pattern to dynamically choose an algorithm
Who this book is for
This Learning Path is specially designed for Python developers who want to build high-performance applications and learn about single core and multi-core programming, distributed concurrency, and Python design patterns. Some experience with Python programming language will help you get the most out of this Learning Path.
商品描述(中文翻譯)
#### 主要特點
- 使用 Dask 和 PySpark 在叢集上設置和運行分佈式算法
- 掌握準確實現程式碼中的併發技能
- 通過實際案例獲得 Python 設計模式的實踐經驗
#### 書籍描述
本學習路徑展示了如何利用原生和第三方 Python 函式庫的力量來構建穩健且響應迅速的應用程式。您將學習有關分析器和反應式編程、併發和並行性,以及使您的應用程式快速高效的工具。您將發現如何使用 TensorFlow 和 Theano 為並行架構編寫程式碼,並使用 Dask 和 PySpark 等技術利用計算機叢集進行大規模計算。通過了解 Python 設計模式的運作方式,您將能夠克隆物件、保護介面、動態選擇算法,並在高效能計算中完成更多任務。
在本學習路徑結束時,您將具備技能和信心,構建引人入勝的模型,快速為您的問題提供高效解決方案。
本學習路徑包含以下 Packt 產品的內容:
- Gabriele Lanaro 的《Python 高效能 - 第二版》
- Quan Nguyen 的《掌握 Python 中的併發》
- Sakis Kasampalis 的《掌握 Python 設計模式》
#### 您將學到的內容
- 使用 NumPy 和 pandas 導入和操作數據集
- 使用 Cython 和 Numba 實現原生性能
- 使用 asyncio 和 RxPy 編寫非同步程式碼
- 設計高度可擴展的程式,並進行應用程式搭建
- 探索抽象方法以維護數據一致性
- 使用原型模式克隆物件
- 使用適配器模式使不兼容的介面兼容
- 使用策略模式動態選擇算法
#### 本書適合誰
本學習路徑專為希望構建高效能應用程式的 Python 開發者設計,並學習單核心和多核心編程、分佈式併發以及 Python 設計模式。對 Python 程式語言有一定經驗將幫助您充分利用本學習路徑。
作者簡介
- Benchmarking and Profiling
- Pure Python Optimizations
- Fast Array Operations with NumPy and Pandas
- C Performance with Cython
- Exploring Compilers
- Implementing Concurrency
- Parallel Processing
- Advanced Introduction to Concurrent and Parallel Programming
- Amdahl's Law
- Working with Threads in Python
- Using the with Statement in Threads
- Concurrent Web Requests
- Working with Processes in Python
- Reduction Operators in Processes
- Concurrent Image Processing
- Introduction to Asynchronous Programming
- Implementing Asynchronous Programming in Python
- Building Communication Channels with asyncio
- Deadlocks
- Starvation
- Race Conditions
- The Global Interpreter Lock
- The Factory Pattern
- The Builder Pattern
- Other Creational Patterns
- The Adapter Pattern
- The Decorator Pattern
- The Bridge Pattern
- The Facade Pattern
- Other Structural Patterns
- The Chain of Responsibility Pattern
- The Command Pattern
作者簡介(中文翻譯)
1. 基準測試與性能分析
2. 純 Python 優化
3. 使用 NumPy 和 Pandas 的快速陣列操作
4. 使用 Cython 的 C 語言性能
5. 探索編譯器
6. 實現併發
7. 平行處理
8. 併發與平行程式設計的進階介紹
9. 阿姆達爾法則
10. 在 Python 中使用執行緒
11. 在執行緒中使用 with 語句
12. 併發網路請求
13. 在 Python 中使用進程
14. 進程中的歸約運算子
15. 併發影像處理
16. 非同步程式設計介紹
17. 在 Python 中實現非同步程式設計
18. 使用 asyncio 建立通訊通道
19. 死鎖
20. 餓死
21. 競爭條件
22. 全域解釋器鎖
23. 工廠模式
24. 建造者模式
25. 其他創建模式
26. 適配器模式
27. 裝飾者模式
28. 橋接模式
29. 外觀模式
30. 其他結構模式
31. 責任鏈模式
32. 命令模式