Causal Inference in R: Decipher complex relationships with advanced R techniques for data-driven decision-making (Paperback)
暫譯: R中的因果推斷:利用進階R技術解碼複雜關係以進行數據驅動的決策制定(平裝本)

Das, Subhajit

  • 出版商: Packt Publishing
  • 出版日期: 2024-11-29
  • 售價: $1,860
  • 貴賓價: 9.5$1,767
  • 語言: 英文
  • 頁數: 382
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1837639027
  • ISBN-13: 9781837639021
  • 相關分類: R 語言
  • 海外代購書籍(需單獨結帳)

買這商品的人也買了...

相關主題

商品描述

Master the fundamentals to advanced techniques of causal inference through a practical, hands-on approach with extensive R code examples and real-world applications

Key Features:

- Explore causal analysis with hands-on R tutorials and real-world examples

- Grasp complex statistical methods by taking a detailed, easy-to-follow approach

- Equip yourself with actionable insights and strategies for making data-driven decisions

- Purchase of the print or Kindle book includes a free PDF eBook

Book Description:

Determining causality in data is difficult due to confounding factors. Written by an applied scientist specializing in causal inference with over a decade of experience, Causal Inference in R provides the tools and methods you need to accurately establish causal relationships, improving data-driven decision-making.

This book helps you get to grips with foundational concepts, offering a clear understanding of causal models and their relevance in data analysis. You'll progress through chapters that blend theory with hands-on examples, illustrating how to apply advanced statistical methods to real-world scenarios. You'll discover techniques for establishing causality, from classic approaches to contemporary methods, such as propensity score matching and instrumental variables. Each chapter is enriched with detailed case studies and R code snippets, enabling you to implement concepts immediately. Beyond technical skills, this book also emphasizes critical thinking in data analysis to empower you to make informed, data-driven decisions. The chapters enable you to harness the power of causal inference in R to uncover deeper insights from data.

By the end of this book, you'll be able to confidently establish causal relationships and make data-driven decisions with precision.

What You Will Learn:

- Get a solid understanding of the fundamental concepts and applications of causal inference

- Utilize R to construct and interpret causal models

- Apply techniques for robust causal analysis in real-world data

- Implement advanced causal inference methods, such as instrumental variables and propensity score matching

- Develop the ability to apply graphical models for causal analysis

- Identify and address common challenges and pitfalls in controlled experiments for effective causal analysis

- Become proficient in the practical application of doubly robust estimation using R

Who this book is for:

This book is for data practitioners, statisticians, and researchers keen on enhancing their skills in causal inference using R, as well as individuals who aspire to make data-driven decisions in complex scenarios. It serves as a valuable resource for both beginners and experienced professionals in data analysis, public policy, economics, and social sciences. Academics and students looking to deepen their understanding of causal models and their practical implementation will also find it highly beneficial.

Table of Contents

- Introducing Causal Inference

- Unraveling Confounding and Associations

- Initiating R with a Basic Causal Inference Example

- Constructing Causality Models with Graphs

- Navigating Causal Inference through Directed Acyclic Graphs

- Employing Propensity Score Techniques

- Employing Regression Approaches for Causal Inference

- Executing A/B Testing and Controlled Experiments

- Implementing Doubly Robust Estimation

- Analyzing Instrumental Variables

- Investigating Mediation Analysis

- Exploring Sensitivity Analysis

- Scrutinizing Heterogeneity in Causal Inference

- Harnessing Causal Forests and Machine Learning Methods

- Implementing Causal Discovery in R

商品描述(中文翻譯)

**掌握因果推斷的基本原理到進階技術,透過實用的實作方法,搭配大量的 R 語言範例和真實世界應用**

**主要特色:**

- 透過實作 R 語言教學和真實案例探索因果分析
- 以詳細且易於理解的方法掌握複雜的統計方法
- 裝備自己以獲得可行的見解和策略,做出數據驅動的決策
- 購買印刷版或 Kindle 書籍可獲得免費 PDF 電子書

**書籍描述:**

由一位專注於因果推斷的應用科學家撰寫,擁有超過十年的經驗,《Causal Inference in R》提供了準確建立因果關係所需的工具和方法,改善數據驅動的決策制定。

本書幫助你掌握基礎概念,清楚理解因果模型及其在數據分析中的相關性。你將通過融合理論與實作範例的章節,了解如何將進階統計方法應用於真實世界情境。你將發現建立因果關係的技術,從經典方法到當代方法,如傾向分數匹配和工具變數。每一章都附有詳細的案例研究和 R 語言程式碼片段,使你能立即實施概念。除了技術技能外,本書還強調在數據分析中的批判性思維,幫助你做出明智的數據驅動決策。這些章節使你能夠利用 R 語言的因果推斷能力,從數據中挖掘更深層的見解。

在本書結束時,你將能夠自信地建立因果關係,並精確地做出數據驅動的決策。

**你將學到的內容:**

- 獲得因果推斷的基本概念和應用的扎實理解
- 利用 R 語言構建和解釋因果模型
- 在真實數據中應用穩健的因果分析技術
- 實施進階的因果推斷方法,如工具變數和傾向分數匹配
- 發展應用圖形模型進行因果分析的能力
- 識別並解決控制實驗中常見的挑戰和陷阱,以進行有效的因果分析
- 精通使用 R 語言進行雙重穩健估計的實際應用

**本書適合誰:**

本書適合數據從業者、統計學家和研究人員,特別是那些希望提升使用 R 語言進行因果推斷技能的人,以及希望在複雜情境中做出數據驅動決策的個體。它是數據分析、公共政策、經濟學和社會科學領域中初學者和經驗豐富的專業人士的寶貴資源。學術界和學生希望深入理解因果模型及其實際應用的人也會發現本書非常有益。

**目錄:**

- 介紹因果推斷
- 解開混淆和關聯
- 使用基本因果推斷範例啟動 R
- 使用圖形構建因果模型
- 通過有向無環圖導航因果推斷
- 使用傾向分數技術
- 使用回歸方法進行因果推斷
- 執行 A/B 測試和控制實驗
- 實施雙重穩健估計
- 分析工具變數
- 研究中介分析
- 探索敏感性分析
- 檢視因果推斷中的異質性
- 利用因果森林和機器學習方法
- 在 R 中實施因果發現