Fundamentals of Analytics Engineering: An introduction to building end-to-end analytics solutions
Wilde, Dumky de, Kassapian, Fanny, Gligorevic, Jovan
- 出版商: Packt Publishing
- 出版日期: 2024-03-29
- 售價: $1,840
- 貴賓價: 9.5 折 $1,748
- 語言: 英文
- 頁數: 332
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1837636451
- ISBN-13: 9781837636457
海外代購書籍(需單獨結帳)
相關主題
商品描述
Gain a holistic understanding of the analytics engineering lifecycle by integrating principles from both data analysis and engineering
Key Features
- Discover how analytics engineering aligns with your organization's data strategy
- Access insights shared by a team of seven industry experts
- Tackle common analytics engineering problems faced by modern businesses
Book Description
Navigate the world of data analytics with Fundamentals of Analytics Engineering-guiding you from foundational concepts to advanced techniques of data ingestion and warehousing, data lakehouse, and data modeling. Written by a team of 7 industry experts, this book helps you to transform raw data into structured insights.
In this book, you'll discover how to clean, filter, aggregate, and reformat data, and seamlessly serve it across diverse platforms. With practical guidance, you'll also learn how to build a simple data platform using Airbyte for ingestion, DuckDB for warehousing, dbt for transformations, and Tableau for visualization. From data quality and observability to fostering collaboration on codebases, you'll discover effective strategies for ensuring data integrity and driving collaborative success. As you advance, you'll become well-versed with the CI/CD principles for automated code building, testing, and deployment-laying the foundation for consistent and reliable pipelines. And with invaluable insights into gathering business requirements, documenting complex business logic, and the importance of data governance, you'll develop a holistic understanding of the analytics lifecycle.
By the end of this book, you'll be armed with the essential techniques and best practices for developing scalable analytics solutions from end to end.
What you will learn
- Design and implement data pipelines from ingestion to serving data
- Explore best practices for data modeling and schema design
- Gain insights into the use of cloud-based analytics platforms and tools for scalable data processing
- Understand the principles of data governance and collaborative coding
- Comprehend data quality management in analytics engineering
- Gain practical skills in using analytics engineering tools to conquer real-world data challenges
Who this book is for
This book is for data engineers and data analysts considering pivoting their careers into analytics engineering. Analytics engineers who want to upskill and search for gaps in their knowledge will also find this book helpful, as will other data professionals who want to understand the value of analytics engineering in their organization's journey toward data maturity. To get the most out of this book, you should have a basic understanding of data analysis and engineering concepts such as data cleaning, visualization, ETL and data warehousing.
商品描述(中文翻譯)
獲得從數據分析和工程學的原則中整合的全面理解分析工程生命周期的書籍。
主要特點:
- 發現分析工程如何與組織的數據策略相一致
- 獲取七位行業專家分享的見解
- 解決現代企業面臨的常見分析工程問題
- 購買印刷版或Kindle版書籍包括免費的PDF電子書
書籍描述:
通過《分析工程基礎》這本書,引導您從基礎概念到數據摄取和數據倉儲、數據湖和數據建模的高級技術,探索數據分析的世界。這本書由七位行業專家撰寫,幫助您將原始數據轉化為結構化的洞察。
在這本書中,您將學習如何清理、過濾、聚合和重新格式化數據,並在不同平台上無縫提供數據。通過實用指南,您還將學習如何使用Airbyte進行摄取、DuckDB進行倉儲、dbt進行轉換和Tableau進行可視化,構建一個簡單的數據平台。從數據質量和可觀察性到促進代碼庫上的協作,您將發現確保數據完整性和推動協作成功的有效策略。隨著您的進步,您將熟悉用於自動代碼構建、測試和部署的CI/CD原則,為一致可靠的流程奠定基礎。並且通過對收集業務需求、記錄複雜業務邏輯以及數據治理的重要性的寶貴見解,您將對分析生命周期有全面的理解。
通過閱讀本書,您將掌握從頭到尾開發可擴展分析解決方案的基本技術和最佳實踐。
您將學到什麼:
- 設計和實施從摄取到提供數據的數據管道
- 探索數據建模和模式設計的最佳實踐
- 瞭解基於雲的可擴展數據處理的平台和工具的使用
- 理解數據治理和協作編碼的原則
- 理解分析工程中的數據質量管理
- 獲得使用分析工程工具解決現實數據挑戰的實用技能
本書適合將職業轉向分析工程的數據工程師和數據分析師。希望提升技能並尋找知識差距的分析工程師也會發現本書有用,其他希望瞭解分析工程在組織數據成熟度之旅中的價值的數據專業人士也會受益。為了充分利用本書,您應該對數據分析和工程概念,如數據清理、可視化、ETL和數據倉儲有基本的理解。
目錄大綱
- What is Analytics Engineering?
- The Modern Data Stack
- Data Ingestion
- Data Warehouses
- Data Modeling
- Data Transformation
- Serving Data
- Hands-on: Building a Data Platform
- Data Quality & Observability
- Writing Code in a Team
- Writing Robust Pipelines
- Gathering Business Requirements
- Documenting Business Logic
- Data Governance
目錄大綱(中文翻譯)
什麼是分析工程?
現代數據堆棧
數據輸入
數據倉庫
數據建模
數據轉換
數據服務
實踐:構建數據平台
數據質量和可觀察性
團隊中的代碼編寫
編寫健壯的流程
收集業務需求
記錄業務邏輯
數據治理