Quantum Machine Learning and Optimisation in Finance - Second Edition: Drive financial innovation with quantum-powered algorithms and optimisation str
暫譯: 量子機器學習與金融優化(第二版):利用量子驅動的演算法與優化推動金融創新
Jacquier, Antoine, Kondratyev, Oleksiy, Lipton, Alexander
- 出版商: Packt Publishing
- 出版日期: 2024-12-31
- 售價: $1,870
- 貴賓價: 9.5 折 $1,777
- 語言: 英文
- 頁數: 494
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1836209614
- ISBN-13: 9781836209614
-
相關分類:
Machine Learning、Algorithms-data-structures、量子 Quantum
海外代購書籍(需單獨結帳)
商品描述
Get a detailed introduction to quantum computing and quantum machine learning, with a focus on finance-related applications
Key Features:
- Find out how quantum algorithms enhance financial modeling and decision-making
- Improve your knowledge of the variety of quantum machine learning and optimisation algorithms
- Look into practical near-term applications for tackling real-world financial challenges
- Purchase of the print or Kindle book includes a free PDF eBook
Book Description:
As quantum machine learning (QML) continues to evolve, many professionals struggle to apply its powerful algorithms to real-world problems using noisy intermediate-scale quantum (NISQ) hardware. This book bridges that gap by focusing on hands-on QML applications tailored to NISQ systems, moving beyond the traditional textbook approaches that explore standard algorithms like Shor's and Grover's, which lie beyond current NISQ capabilities.
You'll get to grips with major QML algorithms that have been widely studied for their transformative potential in finance and learn hybrid quantum-classical computational protocols, the most effective way to leverage quantum and classical computing systems together.
The authors, Antoine Jacquier, a distinguished researcher in quantum computing and stochastic analysis, and Oleksiy Kondratyev, a Quant of the Year awardee with over 20 years in quantitative finance, offer a hardware-agnostic perspective. They present a balanced view of both analog and digital quantum computers, delving into the fundamental characteristics of the algorithms while highlighting the practical limitations of today's quantum hardware.
By the end of this quantum book, you'll have a deeper understanding of the significance of quantum computing in finance and the skills needed to apply QML to solve complex challenges, driving innovation in your work.
What You Will Learn:
- Familiarize yourself with analog and digital quantum computing principles and methods
- Explore solutions to NP-hard combinatorial optimisation problems using quantum annealers
- Build and train quantum neural networks for classification and market generation
- Discover how to leverage quantum feature maps for enhanced data representation
- Work with variational algorithms to optimise quantum processes
- Implement symmetric encryption techniques on a quantum computer
Who this book is for:
This book is for academic researchers, STEM students, finance professionals in quantitative finance, and AI/ML experts. No prior knowledge of quantum mechanics is needed. Mathematical concepts are rigorously presented, but the emphasis is on understanding the fundamental properties of models and algorithms, making them accessible to a broader audience. With its deep coverage of QML applications for solving real-world financial challenges, this guide is an essential resource for anyone interested in finance and quantum computing.
Table of Contents
- The Principles of Quantum Mechanics
- Adiabatic Quantum Computing
- Quadratic Unconstrained Binary Optimisation
- Quantum Boosting
- Quantum Boltzmann Machine
- Qubits and Quantum Logic Gates
- Parameterised Quantum Circuits and Data Encoding
- Quantum Neural Network
- Quantum Circuit Born Machine
- Variational Quantum Eigensolver
- Quantum Approximate Optimisation Algorithm
- Quantum Kernels and Quantum Two-Sample Test
- The Power of Parameterised Quantum Circuits
- Advanced QML Models
- Beyond NISQ
商品描述(中文翻譯)
獲得量子計算和量子機器學習的詳細介紹,重點關注與金融相關的應用
主要特點:
- 了解量子算法如何增強金融建模和決策制定
- 提升對各種量子機器學習和優化算法的知識
- 探索解決現實金融挑戰的實用短期應用
- 購買印刷版或 Kindle 書籍可獲得免費 PDF 電子書
書籍描述:
隨著量子機器學習(QML)的不斷發展,許多專業人士在使用噪聲中等規模量子(NISQ)硬體將其強大算法應用於現實問題時面臨困難。本書通過專注於針對 NISQ 系統的實踐 QML 應用來填補這一空白,超越傳統教科書方法,這些方法探討了像 Shor 和 Grover 的標準算法,這些算法超出了當前 NISQ 的能力範圍。
您將掌握已被廣泛研究的主要 QML 算法,這些算法在金融領域具有變革潛力,並學習混合量子-經典計算協議,這是最有效的方式來結合量子和經典計算系統。
作者 Antoine Jacquier 是量子計算和隨機分析的傑出研究者,Oleksiy Kondratyev 是年度量化專家獎得主,擁有超過 20 年的量化金融經驗,提供了一個與硬體無關的視角。他們對類比和數位量子計算機提供了平衡的看法,深入探討算法的基本特徵,同時強調當前量子硬體的實際限制。
在這本量子書的結尾,您將對量子計算在金融中的重要性有更深入的理解,以及應用 QML 解決複雜挑戰所需的技能,推動您工作的創新。
您將學到的內容:
- 熟悉類比和數位量子計算的原則和方法
- 探索使用量子退火器解決 NP 困難的組合優化問題
- 構建和訓練量子神經網絡以進行分類和市場生成
- 發現如何利用量子特徵圖增強數據表示
- 使用變分算法優化量子過程
- 在量子計算機上實現對稱加密技術
本書適合對象:
本書適合學術研究人員、STEM 學生、量化金融的金融專業人士以及 AI/ML 專家。無需具備量子力學的先前知識。數學概念被嚴謹地呈現,但重點在於理解模型和算法的基本特性,使其對更廣泛的讀者群體可及。這本指南深入涵蓋了解決現實金融挑戰的 QML 應用,是任何對金融和量子計算感興趣的人的必備資源。
目錄:
- 量子力學原理
- 絶熱量子計算
- 二次無約束二進制優化
- 量子增強
- 量子玻爾茲曼機
- 量子位元和量子邏輯閘
- 參數化量子電路和數據編碼
- 量子神經網絡
- 量子電路博恩機
- 變分量子特徵求解器
- 量子近似優化算法
- 量子核和量子雙樣本測試
- 參數化量子電路的力量
- 進階 QML 模型
- 超越 NISQ