RAG-Driven Generative AI: Build custom retrieval augmented generation pipelines with LlamaIndex, Deep Lake, and Pinecone (基於RAG的生成式AI:使用LlamaIndex、Deep Lake和Pinecone構建自訂檢索增強生成管道)
Rothman, Denis
- 出版商: Packt Publishing
- 出版日期: 2024-09-30
- 售價: $1,810
- 貴賓價: 9.5 折 $1,720
- 語言: 英文
- 頁數: 334
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1836200919
- ISBN-13: 9781836200918
立即出貨 (庫存 < 3)
買這商品的人也買了...
-
$2,223Natural Language Processing with Transformers, Revised Edition (Paperback)
-
$1,250$1,188 -
$2,641Generative Deep Learning: Teaching Machines to Paint, Write, Compose, and Play, 2/e (Paperback)
-
$2,210$2,100 -
$2,010$1,910
相關主題
商品描述
Minimize AI hallucinations and build accurate, custom generative AI pipelines with RAG using embedded vector databases and integrated human feedback
Purchase of the print or Kindle book includes a free eBook in PDF format
Key Features:
- Implement RAG's traceable outputs, linking each response to its source document to build reliable multimodal conversational agents
- Deliver accurate generative AI models in pipelines integrating RAG, real-time human feedback improvements, and knowledge graphs
- Balance cost and performance between dynamic retrieval datasets and fine-tuning static data
Book Description:
RAG-Driven Generative AI provides a roadmap for building effective LLM, computer vision, and generative AI systems that balance performance and costs.
This book offers a detailed exploration of RAG and how to design, manage, and control multimodal AI pipelines. By connecting outputs to traceable source documents, RAG improves output accuracy and contextual relevance, offering a dynamic approach to managing large volumes of information. This AI book shows you how to build a RAG framework, providing practical knowledge on vector stores, chunking, indexing, and ranking. You'll discover techniques to optimize your project's performance and better understand your data, including using adaptive RAG and human feedback to refine retrieval accuracy, balancing RAG with fine-tuning, implementing dynamic RAG to enhance real-time decision-making, and visualizing complex data with knowledge graphs.
You'll be exposed to a hands-on blend of frameworks like LlamaIndex and Deep Lake, vector databases such as Pinecone and Chroma, and models from Hugging Face and OpenAI. By the end of this book, you will have acquired the skills to implement intelligent solutions, keeping you competitive in fields from production to customer service across any project.
What You Will Learn:
- Scale RAG pipelines to handle large datasets efficiently
- Employ techniques that minimize hallucinations and ensure accurate responses
- Implement indexing techniques to improve AI accuracy with traceable and transparent outputs
- Customize and scale RAG-driven generative AI systems across domains
- Find out how to use Deep Lake and Pinecone for efficient and fast data retrieval
- Control and build robust generative AI systems grounded in real-world data
- Combine text and image data for richer, more informative AI responses
Who this book is for:
This book is ideal for data scientists, AI engineers, machine learning engineers, and MLOps engineers. If you are a solutions architect, software developer, product manager, or project manager looking to enhance the decision-making process of building RAG applications, then you'll find this book useful.
Table of Contents
- Why Retrieval Augmented Generation(RAG)?
- RAG Embeddings Vector Stores with Activeloop and OpenAI
- Indexed-based RAG with LlamaIndex and Langchain
- Multimodal Modular RAG with Pincecone
- Boosting RAG Performance with Expert Human Feedback
- All in One with Meta RAG
- Organizing RAG with Llamaindex Knowledge Graphs
- Exploring the Scaling Limits of RAG
- Empowering AI Models: Fine-tuning RAG Data and Human Feedback
- Building the RAG Pipeline from Data Collection to Generative AI
商品描述(中文翻譯)
最小化 AI 幻覺,並利用嵌入式向量數據庫和整合的人類反饋,構建準確的自定義生成 AI 管道,使用 RAG。
購買印刷版或 Kindle 書籍可獲得免費 PDF 格式電子書。
主要特點:
- 實施 RAG 的可追溯輸出,將每個回應鏈接到其來源文件,以構建可靠的多模態對話代理。
- 在整合 RAG、實時人類反饋改進和知識圖譜的管道中提供準確的生成 AI 模型。
- 在動態檢索數據集和微調靜態數據之間平衡成本和性能。
書籍描述:
《RAG 驅動的生成 AI》提供了一個構建有效 LLM、計算機視覺和生成 AI 系統的路線圖,平衡性能和成本。本書詳細探討了 RAG 及其設計、管理和控制多模態 AI 管道的方法。通過將輸出連接到可追溯的來源文件,RAG 提高了輸出的準確性和上下文相關性,提供了一種動態管理大量信息的方法。本書展示了如何構建 RAG 框架,提供有關向量存儲、分塊、索引和排名的實用知識。您將發現優化項目性能和更好理解數據的技術,包括使用自適應 RAG 和人類反饋來精煉檢索準確性,平衡 RAG 與微調,實施動態 RAG 以增強實時決策,並使用知識圖譜可視化複雜數據。
您將接觸到 LlamaIndex 和 Deep Lake 等框架的實踐結合,Pinecone 和 Chroma 等向量數據庫,以及來自 Hugging Face 和 OpenAI 的模型。到本書結束時,您將掌握實施智能解決方案的技能,使您在從生產到客戶服務的各個項目中保持競爭力。
您將學到的內容:
- 擴展 RAG 管道以高效處理大型數據集。
- 採用最小化幻覺並確保準確回應的技術。
- 實施索引技術,以提高 AI 準確性,並提供可追溯和透明的輸出。
- 在各個領域自定義和擴展 RAG 驅動的生成 AI 系統。
- 瞭解如何使用 Deep Lake 和 Pinecone 進行高效快速的數據檢索。
- 控制和構建基於現實世界數據的穩健生成 AI 系統。
- 結合文本和圖像數據,以提供更豐富、更具信息性的 AI 回應。
本書適合對象:
本書非常適合數據科學家、AI 工程師、機器學習工程師和 MLOps 工程師。如果您是解決方案架構師、軟體開發人員、產品經理或項目經理,並希望增強構建 RAG 應用程序的決策過程,那麼您會發現本書非常有用。
目錄:
- 為什麼選擇檢索增強生成 (RAG)?
- 使用 Activeloop 和 OpenAI 的 RAG 嵌入向量存儲。
- 基於索引的 RAG 與 LlamaIndex 和 Langchain。
- 使用 Pinecone 的多模塊 RAG。
- 通過專家人類反饋提升 RAG 性能。
- 一體化的 Meta RAG。
- 使用 Llamaindex 知識圖譜組織 RAG。
- 探索 RAG 的擴展限制。
- 賦能 AI 模型:微調 RAG 數據和人類反饋。
- 從數據收集到生成 AI 的 RAG 管道構建。