Deep Reinforcement Learning Hands-On : A practical and easy-to-follow guide to RL from Q-learning and DQNs to PPO and RLHF, 3/e (Paperback)
暫譯: 深度強化學習實戰:從 Q-learning 和 DQN 到 PPO 和 RLHF 的實用易懂指南,第 3 版(平裝本)

Lapan, Maxim

  • 出版商: Packt Publishing
  • 出版日期: 2024-11-12
  • 售價: $2,340
  • 貴賓價: 9.5$2,223
  • 語言: 英文
  • 頁數: 716
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1835882706
  • ISBN-13: 9781835882702
  • 相關分類: ReinforcementDeepLearning
  • 立即出貨 (庫存=1)

相關主題

商品描述

Maxim Lapan delivers intuitive explanations and insights into complex reinforcement learning (RL) concepts, starting from the basics of RL on simple environments and tasks to modern, state-of-the-art methods

Purchase of the print or Kindle book includes a free PDF eBook

Key Features:

- Learn with concise explanations, modern libraries, and diverse applications from games to stock trading and web navigation

- Develop deep RL models, improve their stability, and efficiently solve complex environments

- New content on RL from human feedback (RLHF), MuZero, and transformers

Book Description:

Reward yourself and take this journey into RL with the third edition of Deep Reinforcement Learning Hands-On. The book takes you through the basics of RL to more advanced concepts with the help of various applications, including game playing, discrete optimization, stock trading, and web browser navigation. By walking you through landmark research papers in the field, this deep reinforcement learning book will equip you with the practical know-how of RL and the theoretical foundation to understand and implement most modern RL papers.

The book retains its strengths by providing concise and easy-to-follow explanations. You'll work through practical and diverse examples, from grid environments and games to stock trading and RL agents in web environments, to give you a well-rounded understanding of RL, its capabilities, and use cases. You'll learn about key topics, such as deep Q-networks (DQNs), policy gradient methods, continuous control problems, and highly scalable, non-gradient methods.

If you want to learn about RL using a practical approach using OpenAI Gym and PyTorch, concise explanations, and the incremental development of topics, then Deep Reinforcement Learning Hands-On, Third Edition is your ideal companion

What You Will Learn:

- Stay on the cutting edge with new content on MuZero, RL with human feedback, and LLMs

- Evaluate RL methods, including cross-entropy, DQN, actor-critic, TRPO, PPO, DDPG, and D4PG

- Implement RL algorithms using PyTorch and modern RL libraries

- Build and train deep Q-networks to solve complex tasks in Atari environments

- Speed up RL models using algorithmic and engineering approaches

- Leverage advanced techniques like proximal policy optimization (PPO) for more stable training

Who this book is for:

This book is ideal for machine learning engineers, software engineers, and data scientists looking to learn and apply deep reinforcement learning in practice. It assumes familiarity with Python, calculus, and machine learning concepts. With practical examples and high-level overviews, it's also suitable for experienced professionals looking to deepen their understanding of advanced deep RL methods and apply them across industries, such as gaming and finance

Table of Contents

- What Is Reinforcement Learning?

- OpenAI Gym

- Deep Learning with PyTorch

- The Cross-Entropy Method

- Tabular Learning and the Bellman Equation

- Deep Q-Networks

- Higher-Level RL Libraries

- DQN Extensions

- Ways to Speed up RL

- Stocks Trading Using RL

- Policy Gradients - an Alternative

- Actor-Critic Methods - A2C and A3C

- The TextWorld Environment

- Web Navigation

- Continuous Action Space

- Trust Regions - PPO, TRPO, ACKTR, and SAC

- Black-Box Optimization in RL

- Advanced Exploration

- RL with Human Feedback

- MuZero

- RL in Discrete Optimization

- Multi-agent RL

- RL in Robotics

商品描述(中文翻譯)

**Maxim Lapan 提供直觀的解釋和對複雜強化學習 (RL) 概念的深入見解,從簡單環境和任務的 RL 基礎開始,到現代的最先進方法。**

**購買印刷版或 Kindle 書籍包括免費的 PDF 電子書。**

**主要特點:**

- 透過簡潔的解釋、現代庫和多樣的應用(從遊戲到股票交易和網頁導航)進行學習。

- 開發深度 RL 模型,改善其穩定性,並有效解決複雜環境。

- 新增有關人類反饋的 RL (RLHF)、MuZero 和變壓器的內容。

**書籍描述:**

獎勵自己,與《深度強化學習實戰》第三版一起踏上這段 RL 之旅。本書帶您從 RL 的基礎知識進入更高級的概念,並通過各種應用(包括遊戲、離散優化、股票交易和網頁瀏覽)來幫助您。通過引導您閱讀該領域的里程碑研究論文,這本深度強化學習書籍將使您具備 RL 的實用知識和理解及實現大多數現代 RL 論文的理論基礎。

本書保留了其優勢,提供簡潔且易於理解的解釋。您將通過實用且多樣的範例,從網格環境和遊戲到股票交易和網頁環境中的 RL 代理,全面了解 RL 及其能力和應用案例。您將學習關鍵主題,如深度 Q 網絡 (DQNs)、策略梯度方法、連續控制問題以及高度可擴展的非梯度方法。

如果您想通過實用的方法學習 RL,使用 OpenAI Gym 和 PyTorch,並以簡潔的解釋和逐步發展的主題,那麼《深度強化學習實戰》第三版將是您的理想伴侶。

**您將學到的內容:**

- 透過有關 MuZero、人類反饋的 RL 和 LLM 的新內容,保持在前沿。

- 評估 RL 方法,包括交叉熵、DQN、演員-評論家、TRPO、PPO、DDPG 和 D4PG。

- 使用 PyTorch 和現代 RL 庫實現 RL 算法。

- 構建和訓練深度 Q 網絡以解決 Atari 環境中的複雜任務。

- 使用算法和工程方法加速 RL 模型。

- 利用先進技術,如近端策略優化 (PPO),以實現更穩定的訓練。

**本書適合誰:**

本書非常適合希望學習和應用深度強化學習的機器學習工程師、軟體工程師和數據科學家。它假設讀者對 Python、微積分和機器學習概念有一定的熟悉度。通過實用範例和高層次概述,本書也適合希望深入了解先進深度 RL 方法並在遊戲和金融等行業中應用的經驗豐富的專業人士。

**目錄:**

- 什麼是強化學習?

- OpenAI Gym

- 使用 PyTorch 的深度學習

- 交叉熵方法

- 表格學習和貝爾曼方程

- 深度 Q 網絡

- 更高級的 RL 庫

- DQN 擴展

- 加速 RL 的方法

- 使用 RL 的股票交易

- 策略梯度 - 一種替代方法

- 演員-評論家方法 - A2C 和 A3C

- TextWorld 環境

- 網頁導航

- 連續動作空間

- 信任區域 - PPO、TRPO、ACKTR 和 SAC

- RL 中的黑箱優化

- 先進探索

- 人類反饋的 RL

- MuZero

- 離散優化中的 RL

- 多代理 RL

- 機器人學中的 RL