Python for Algorithmic Trading Cookbook: Recipes for designing, building, and deploying algorithmic trading strategies with Python

Strimpel, Jason

  • 出版商: Packt Publishing
  • 出版日期: 2024-08-16
  • 售價: $2,350
  • 貴賓價: 9.5$2,233
  • 語言: 英文
  • 頁數: 412
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1835084702
  • ISBN-13: 9781835084700
  • 相關分類: Python程式語言Algorithms-data-structures
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Harness the power of Python libraries to transform freely available financial market data into algorithmic trading strategies and deploy them into a live trading environment

Key Features:

- Follow practical Python recipes to acquire, visualize, and store market data for market research

- Design, backtest, and evaluate the performance of trading strategies using professional techniques

- Deploy trading strategies built in Python to a live trading environment with API connectivity

- Purchase of the print or Kindle book includes a free PDF eBook

Book Description:

Discover how Python has made algorithmic trading accessible to non-professionals with unparalleled expertise and practical insights from Jason Strimpel, founder of PyQuant News and a seasoned professional with global experience in trading and risk management. This book guides you through from the basics of quantitative finance and data acquisition to advanced stages of backtesting and live trading.

Detailed recipes will help you leverage the cutting-edge OpenBB SDK to gather freely available data for stocks, options, and futures, and build your own research environment using lightning-fast storage techniques like SQLite, HDF5, and ArcticDB. This book shows you how to use SciPy and statsmodels to identify alpha factors and hedge risk, and construct momentum and mean-reversion factors. You'll optimize strategy parameters with walk-forward optimization using vectorbt and construct a production-ready backtest using Zipline Reloaded. Implementing all that you've learned, you'll set up and deploy your algorithmic trading strategies in a live trading environment using the Interactive Brokers API, allowing you to stream tick-level data, submit orders, and retrieve portfolio details.

By the end of this algorithmic trading book, you'll not only have grasped the essential concepts but also the practical skills needed to implement and execute sophisticated trading strategies using Python.

What You Will Learn:

- Acquire and process freely available market data with the OpenBB Platform

- Build a research environment and populate it with financial market data

- Use machine learning to identify alpha factors and engineer them into signals

- Use VectorBT to find strategy parameters using walk-forward optimization

- Build production-ready backtests with Zipline Reloaded and evaluate factor performance

- Set up the code framework to connect and send an order to Interactive Brokers

Who this book is for:

Python for Algorithmic Trading Cookbook equips traders, investors, and Python developers with code to design, backtest, and deploy algorithmic trading strategies. You should have experience investing in the stock market, knowledge of Python data structures, and a basic understanding of using Python libraries like pandas. This book is also ideal for individuals with Python experience who are already active in the market or are aspiring to be.

Table of Contents

- Acquire Free Financial Market Data with Cutting-edge Python Libraries

- Analyze and Transform Financial Market Data with pandas

- Visualize Financial Market Data with Matplotlib, Seaborn, and Plotly Dash

- Store Financial Market Data on Your Computer

- Build Alpha Factors for Stock Portfolios

- Vector-Based Backtesting with VectorBT

- Event-Based Backtesting Factor Portfolios with Zipline Reloaded

- Evaluate Factor Risk and Performance with Alphalens Reloaded

- Assess Backtest Risk and Performance Metrics with Pyfolio

- Set Up the Interactive Brokers Python API

- Manage Orders, Positions, and Portfolios with the IB API

- Deploy Strategies to a Live Environment

- Advanced Recipes for Market Data and Strategy Management

商品描述(中文翻譯)

利用 Python 函式庫的力量,將自由可得的金融市場數據轉化為算法交易策略,並將其部署到實時交易環境中。

主要特點:
- 遵循實用的 Python 食譜,獲取、可視化和存儲市場數據以進行市場研究
- 使用專業技術設計、回測和評估交易策略的表現
- 將用 Python 構建的交易策略部署到具有 API 連接的實時交易環境中
- 購買印刷版或 Kindle 書籍可獲得免費 PDF 電子書

書籍描述:
了解 Python 如何使算法交易對非專業人士變得可及,並從 PyQuant News 創始人 Jason Strimpel 那裡獲得無與倫比的專業知識和實用見解,他是一位在交易和風險管理方面擁有全球經驗的資深專業人士。本書將指導您從量化金融和數據獲取的基礎知識開始,逐步進入回測和實時交易的高級階段。

詳細的食譜將幫助您利用尖端的 OpenBB SDK 收集股票、期權和期貨的自由可得數據,並使用 SQLite、HDF5 和 ArcticDB 等快速存儲技術構建自己的研究環境。本書將教您如何使用 SciPy 和 statsmodels 來識別 alpha 因子和對沖風險,並構建動量和均值回歸因子。您將使用 vectorbt 進行步進優化來優化策略參數,並使用 Zipline Reloaded 構建生產就緒的回測。實施您所學的所有知識,您將使用 Interactive Brokers API 設置並部署您的算法交易策略,允許您串流逐筆數據、提交訂單和檢索投資組合詳情。

在這本算法交易書籍結束時,您不僅將掌握基本概念,還將具備使用 Python 實施和執行複雜交易策略所需的實用技能。

您將學到的內容:
- 使用 OpenBB 平台獲取和處理自由可得的市場數據
- 構建研究環境並填充金融市場數據
- 使用機器學習識別 alpha 因子並將其工程化為信號
- 使用 VectorBT 通過步進優化尋找策略參數
- 使用 Zipline Reloaded 構建生產就緒的回測並評估因子表現
- 設置代碼框架以連接並向 Interactive Brokers 發送訂單

本書適合對象:
《Python 算法交易食譜》為交易者、投資者和 Python 開發者提供設計、回測和部署算法交易策略的代碼。您應該具備股票市場投資經驗、Python 數據結構知識,以及對使用 pandas 等 Python 函式庫的基本理解。本書也非常適合已經活躍於市場或有志於成為市場參與者的 Python 使用者。

目錄:
- 使用尖端 Python 函式庫獲取免費金融市場數據
- 使用 pandas 分析和轉換金融市場數據
- 使用 Matplotlib、Seaborn 和 Plotly Dash 可視化金融市場數據
- 在您的電腦上存儲金融市場數據
- 為股票投資組合構建 alpha 因子
- 使用 VectorBT 進行基於向量的回測
- 使用 Zipline Reloaded 進行事件驅動的回測因子投資組合
- 使用 Alphalens Reloaded 評估因子風險和表現
- 使用 Pyfolio 評估回測風險和表現指標
- 設置 Interactive Brokers Python API
- 使用 IB API 管理訂單、持倉和投資組合
- 將策略部署到實時環境
- 高級市場數據和策略管理食譜