Deep Learning for Time Series Cookbook: Use PyTorch and Python recipes for forecasting, classification, and anomaly detection (Paperback)
暫譯: 時間序列深度學習食譜:使用 PyTorch 和 Python 進行預測、分類與異常檢測

Cerqueira, Vitor, Roque, Luís

  • 出版商: Packt Publishing
  • 出版日期: 2024-03-29
  • 售價: $1,998
  • 貴賓價: 9.5$1,898
  • 語言: 英文
  • 頁數: 274
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1805129236
  • ISBN-13: 9781805129233
  • 相關分類: Python程式語言DeepLearning
  • 立即出貨 (庫存=1)

買這商品的人也買了...

商品描述

Learn how to deal with time series data and how to model it using deep learning and take your skills to the next level by mastering PyTorch using different Python recipes

Key Features

  • Learn the fundamentals of time series analysis and how to model time series data using deep learning
  • Explore the world of deep learning with PyTorch and build advanced deep neural networks
  • Gain expertise in tackling time series problems, from forecasting future trends to classifying patterns and anomaly detection
  • Purchase of the print or Kindle book includes a free PDF eBook

Book Description

Most organizations exhibit a time-dependent structure in their processes, including fields such as finance. By leveraging time series analysis and forecasting, these organizations can make informed decisions and optimize their performance. Accurate forecasts help reduce uncertainty and enable better planning of operations. Unlike traditional approaches to forecasting, deep learning can process large amounts of data and help derive complex patterns. Despite its increasing relevance, getting the most out of deep learning requires significant technical expertise.

This book guides you through applying deep learning to time series data with the help of easy-to-follow code recipes. You'll cover time series problems, such as forecasting, anomaly detection, and classification. This deep learning book will also show you how to solve these problems using different deep neural network architectures, including convolutional neural networks (CNNs) or transformers. As you progress, you'll use PyTorch, a popular deep learning framework based on Python to build production-ready prediction solutions.

By the end of this book, you'll have learned how to solve different time series tasks with deep learning using the PyTorch ecosystem.

What you will learn

  • Grasp the core of time series analysis and unleash its power using Python
  • Understand PyTorch and how to use it to build deep learning models
  • Discover how to transform a time series for training transformers
  • Understand how to deal with various time series characteristics
  • Tackle forecasting problems, involving univariate or multivariate data
  • Master time series classification with residual and convolutional neural networks
  • Get up to speed with solving time series anomaly detection problems using autoencoders and generative adversarial networks (GANs)

Who this book is for

If you're a machine learning enthusiast or someone who wants to learn more about building forecasting applications using deep learning, this book is for you. Basic knowledge of Python programming and machine learning is required to get the most out of this book.

Table of Contents

  1. Getting Started with Time Series
  2. Getting Started with PyTorch
  3. Univariate Time Series Forecasting
  4. Forecasting with PyTorch Lightning
  5. Global Forecasting Models
  6. Advanced Deep Learning Architectures for Time Series Forecasting
  7. Probabilistic Time Series Forecasting
  8. Deep Learning for Time Series Classification
  9. Deep Learning for Time Series Anomaly Detection

商品描述(中文翻譯)

學習如何處理時間序列數據,並使用深度學習對其建模,通過掌握 PyTorch 和不同的 Python 配方將您的技能提升到下一個層次

主要特點


  • 學習時間序列分析的基本原理,以及如何使用深度學習對時間序列數據進行建模

  • 探索深度學習的世界,使用 PyTorch 構建先進的深度神經網絡

  • 獲得解決時間序列問題的專業知識,從預測未來趨勢到模式分類和異常檢測

  • 購買印刷版或 Kindle 書籍可獲得免費 PDF 電子書

書籍描述

大多數組織在其流程中表現出時間依賴的結構,包括金融等領域。通過利用時間序列分析和預測,這些組織可以做出明智的決策並優化其績效。準確的預測有助於減少不確定性,並能更好地規劃運營。與傳統的預測方法不同,深度學習可以處理大量數據並幫助推導出複雜的模式。儘管其相關性日益增加,但充分利用深度學習需要相當的技術專業知識。

本書指導您如何將深度學習應用於時間序列數據,並提供易於遵循的代碼配方。您將涵蓋時間序列問題,例如預測、異常檢測和分類。本深度學習書籍還將向您展示如何使用不同的深度神經網絡架構來解決這些問題,包括卷積神經網絡(CNN)或變壓器。隨著進展,您將使用 PyTorch,這是一個基於 Python 的流行深度學習框架,來構建生產就緒的預測解決方案。

在本書結束時,您將學會如何使用 PyTorch 生態系統解決不同的時間序列任務。

您將學到的內容


  • 掌握時間序列分析的核心,並利用 Python 發揮其威力

  • 理解 PyTorch 及其用法,以構建深度學習模型

  • 發現如何轉換時間序列以訓練變壓器

  • 了解如何處理各種時間序列特徵

  • 解決預測問題,涉及單變量或多變量數據

  • 掌握使用殘差和卷積神經網絡進行時間序列分類

  • 熟悉使用自編碼器和生成對抗網絡(GAN)解決時間序列異常檢測問題

本書適合誰

如果您是機器學習愛好者或想了解更多有關使用深度學習構建預測應用程序的人,本書適合您。需要具備基本的 Python 編程和機器學習知識,以便充分利用本書。

目錄


  1. 時間序列入門

  2. PyTorch 入門

  3. 單變量時間序列預測

  4. 使用 PyTorch Lightning 進行預測

  5. 全球預測模型

  6. 時間序列預測的高級深度學習架構

  7. 概率時間序列預測

  8. 時間序列分類的深度學習

  9. 時間序列異常檢測的深度學習