The Machine Learning Solutions Architect Handbook: Practical strategies and best practices on the ML lifecycle, system design, MLOps, and generative AI, 2/e (Paperback)
暫譯: 機器學習解決方案架構師手冊:ML 生命週期、系統設計、MLOps 與生成式 AI 的實用策略與最佳實踐,第二版(平裝本)
Ping, David
- 出版商: Packt Publishing
- 出版日期: 2024-04-15
- 售價: $1,800
- 貴賓價: 9.5 折 $1,710
- 語言: 英文
- 頁數: 602
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1805122509
- ISBN-13: 9781805122500
-
相關分類:
Machine Learning
立即出貨 (庫存=1)
買這商品的人也買了...
-
$1,450$1,421 -
$1,617Deep Learning (Hardcover)
-
$1,300$1,170 -
$1,300$1,170 -
$1,460$1,387 -
$599$569 -
$599$569 -
$359$341 -
$414$393 -
$1,330$1,264 -
$720$569 -
$720$568
相關主題
商品描述
Design, build, and secure scalable machine learning (ML) systems to solve real-world business problems with Python and AWS
Key Features
- Go in-depth into the ML lifecycle, from ideation and data management to deployment and scaling
- Apply risk management techniques in the ML lifecycle and design architectural patterns for various ML platforms and solutions
- Understand the generative AI lifecycle, its core technologies, and implementation risks
Book Description
David Ping, Head of GenAI and ML Solution Architecture for global industries at AWS, provides expert insights and practical examples to help you become a proficient ML solutions architect, linking technical architecture to business-related skills.
You'll learn about ML algorithms, cloud infrastructure, system design, MLOps, and how to apply ML to solve real-world business problems. David explains the generative AI project lifecycle and examines Retrieval Augmented Generation (RAG), an effective architecture pattern for generative AI applications. You'll also learn about open-source technologies, such as Kubernetes/Kubeflow, for building a data science environment and ML pipelines before building an enterprise ML architecture using AWS. As well as ML risk management and the different stages of AI/ML adoption, the biggest new addition to the handbook is the deep exploration of generative AI.
By the end of this book, you'll have gained a comprehensive understanding of AI/ML across all key aspects, including business use cases, data science, real-world solution architecture, risk management, and governance. You'll possess the skills to design and construct ML solutions that effectively cater to common use cases and follow established ML architecture patterns, enabling you to excel as a true professional in the field.
What you will learn
- Apply ML methodologies to solve business problems across industries
- Design a practical enterprise ML platform architecture
- Gain an understanding of AI risk management frameworks and techniques
- Build an end-to-end data management architecture using AWS
- Train large-scale ML models and optimize model inference latency
- Create a business application using artificial intelligence services and custom models
- Dive into generative AI with use cases, architecture patterns, and RAG
Who this book is for
This book is for solutions architects working on ML projects, ML engineers transitioning to ML solution architect roles, and MLOps engineers. Additionally, data scientists and analysts who want to enhance their practical knowledge of ML systems engineering, as well as AI/ML product managers and risk officers who want to gain an understanding of ML solutions and AI risk management, will also find this book useful. A basic knowledge of Python, AWS, linear algebra, probability, and cloud infrastructure is required before you get started with this handbook.
商品描述(中文翻譯)
設計、建構並保護可擴展的機器學習(ML)系統,以使用 Python 和 AWS 解決現實世界的商業問題
主要特點
- 深入探討 ML 生命週期,從構思和數據管理到部署和擴展
- 在 ML 生命週期中應用風險管理技術,並為各種 ML 平台和解決方案設計架構模式
- 了解生成式 AI 生命週期、其核心技術及實施風險
書籍描述
David Ping,AWS 全球產業的 GenAI 和 ML 解決方案架構負責人,提供專業見解和實用範例,幫助您成為熟練的 ML 解決方案架構師,將技術架構與商業相關技能聯繫起來。
您將學習 ML 算法、雲基礎設施、系統設計、MLOps,以及如何應用 ML 來解決現實世界的商業問題。David 解釋了生成式 AI 專案生命週期,並檢視檢索增強生成(Retrieval Augmented Generation, RAG),這是一種有效的生成式 AI 應用架構模式。您還將了解開源技術,如 Kubernetes/Kubeflow,用於建立數據科學環境和 ML 管道,然後使用 AWS 建立企業 ML 架構。除了 ML 風險管理和 AI/ML 採用的不同階段外,這本手冊最大的新增內容是對生成式 AI 的深入探索。
在本書結束時,您將全面了解 AI/ML 的所有關鍵方面,包括商業用例、數據科學、現實世界解決方案架構、風險管理和治理。您將具備設計和構建有效滿足常見用例的 ML 解決方案的技能,並遵循既定的 ML 架構模式,使您能夠在該領域成為真正的專業人士。
您將學習到的內容
- 應用 ML 方法論解決各行各業的商業問題
- 設計實用的企業 ML 平台架構
- 獲得 AI 風險管理框架和技術的理解
- 使用 AWS 建立端到端的數據管理架構
- 訓練大規模 ML 模型並優化模型推理延遲
- 使用人工智慧服務和自定義模型創建商業應用
- 深入了解生成式 AI,包括用例、架構模式和 RAG
本書適合誰
本書適合從事 ML 專案的解決方案架構師、轉型為 ML 解決方案架構師角色的 ML 工程師,以及 MLOps 工程師。此外,想要增強其 ML 系統工程實務知識的數據科學家和分析師,以及希望了解 ML 解決方案和 AI 風險管理的 AI/ML 產品經理和風險官員也會發現本書有用。在開始閱讀本手冊之前,需具備 Python、AWS、線性代數、概率和雲基礎設施的基本知識。
目錄大綱
- Navigating the ML Lifecycle with ML Solutions Architecture
- Exploring ML Business Use Cases
- Exploring ML Algorithms
- Data Management for ML
- Exploring Open-Source ML Libraries
- Kubernetes Container Orchestration Infrastructure Management
- Open-Source ML Platforms
- Building a Data Science Environment using AWS ML Services
- Designing an Enterprise ML Architecture with AWS ML Services
- Advanced ML Engineering
- Building ML Solutions with AWS AI Services
- AI Risk Management
- Bias, Explainability, Privacy, and Adversarial Attacks
(N.B. Please use the Read Sample option to see further chapters)
目錄大綱(中文翻譯)
- Navigating the ML Lifecycle with ML Solutions Architecture
- Exploring ML Business Use Cases
- Exploring ML Algorithms
- Data Management for ML
- Exploring Open-Source ML Libraries
- Kubernetes Container Orchestration Infrastructure Management
- Open-Source ML Platforms
- Building a Data Science Environment using AWS ML Services
- Designing an Enterprise ML Architecture with AWS ML Services
- Advanced ML Engineering
- Building ML Solutions with AWS AI Services
- AI Risk Management
- Bias, Explainability, Privacy, and Adversarial Attacks
(N.B. Please use the Read Sample option to see further chapters)