Vector Search for Practitioners with Elastic: A toolkit for building NLP solutions for search, observability, and security using vector search
暫譯: Elastic 的向量搜尋實務指南:用於搜尋、可觀察性和安全性的 NLP 解決方案建構工具包

Azarmi, Bahaaldine, Vestal, Jeff

  • 出版商: Packt Publishing
  • 出版日期: 2023-11-30
  • 售價: $2,030
  • 貴賓價: 9.5$1,929
  • 語言: 英文
  • 頁數: 240
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1805121022
  • ISBN-13: 9781805121022
  • 相關分類: Text-mining資訊安全
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Optimize your search capabilities in Elastic by operationalizing and fine-tuning vector search and enhance your search relevance while improving overall search performance

 

Key Features:

  • Install, configure, and optimize the ChatGPT-Elasticsearch plugin with a focus on vector data
  • Learn how to load transformer models, generate vectors, and implement vector search with Elastic
  • Develop a practical understanding of vector search, including a review of current vector databases
  • Purchase of the print or Kindle book includes a free PDF eBook

 

Book Description:

While natural language processing (NLP) is largely used in search use cases, this book aims to inspire you to start using vectors to overcome equally important domain challenges like observability and cybersecurity. The chapters focus mainly on integrating vector search with Elastic to enhance not only their search but also observability and cybersecurity capabilities.

The book begins by teaching you about NLP and the functionality of Elastic in NLP processes. Next, you'll delve into resource requirements and find out how vectors are stored in the dense-vector type along with specific page cache requirements for fast response times. As you advance, you'll discover various tuning techniques and strategies to improve machine learning model deployment, including node scaling, configuration tuning, and load testing with Rally and Python. You'll also cover techniques for vector search with images, fine-tuning models for improved performance, and the use of clip models for image similarity search in Elasticsearch. Finally, you'll explore retrieval-augmented generation (RAG) and learn to integrate ChatGPT with Elasticsearch to leverage vectorized data, ELSER's capabilities, and RRF's refined search mechanism.

By the end of this NLP book, you'll have all the necessary skills needed to implement and optimize vector search in your projects with Elastic.

 

What You Will Learn:

  • Optimize performance by harnessing the capabilities of vector search
  • Explore image vector search and its applications
  • Detect and mask personally identifiable information
  • Implement log prediction for next-generation observability
  • Use vector-based bot detection for cybersecurity
  • Visualize the vector space and explore Search.Next with Elastic
  • Implement a RAG-enhanced application using Streamlit

 

Who this book is for:

If you're a data professional with experience in Elastic observability, search, or cybersecurity and are looking to expand your knowledge of vector search, this book is for you. This book provides practical knowledge useful for search application owners, product managers, observability platform owners, and security operations center professionals. Experience in Python, using machine learning models, and data management will help you get the most out of this book.

商品描述(中文翻譯)

透過操作化和微調向量搜尋來優化您在 Elastic 中的搜尋能力,提升搜尋相關性並改善整體搜尋效能

主要特點:


  • 安裝、配置並優化 ChatGPT-Elasticsearch 插件,專注於向量數據

  • 學習如何加載變壓器模型、生成向量並在 Elastic 中實現向量搜尋

  • 發展對向量搜尋的實用理解,包括對當前向量數據庫的回顧

  • 購買印刷版或 Kindle 書籍可獲得免費 PDF 電子書

書籍描述:

雖然自然語言處理(NLP)主要用於搜尋案例,但本書旨在啟發您開始使用向量來克服同樣重要的領域挑戰,如可觀察性和網絡安全。各章節主要集中於將向量搜尋與 Elastic 整合,以增強其搜尋能力以及可觀察性和網絡安全能力。

本書首先教您有關 NLP 及其在 NLP 流程中 Elastic 的功能。接下來,您將深入了解資源需求,並發現向量是如何以密集向量類型存儲的,以及快速響應時間所需的特定頁面快取要求。隨著進展,您將發現各種調整技術和策略,以改善機器學習模型的部署,包括節點擴展、配置調整以及使用 Rally 和 Python 進行負載測試。您還將涵蓋圖像的向量搜尋技術、微調模型以提高效能,以及在 Elasticsearch 中使用 clip 模型進行圖像相似性搜尋。最後,您將探索檢索增強生成(RAG),並學習如何將 ChatGPT 與 Elasticsearch 整合,以利用向量化數據、ELSER 的能力和 RRF 的精細搜尋機制。

在本 NLP 書籍結束時,您將擁有在您的項目中實施和優化 Elastic 向量搜尋所需的所有技能。

您將學到的內容:


  • 通過利用向量搜尋的能力來優化效能

  • 探索圖像向量搜尋及其應用

  • 檢測和遮蔽個人可識別信息

  • 實施下一代可觀察性的日誌預測

  • 使用基於向量的機器人檢測來增強網絡安全

  • 可視化向量空間並探索 Elastic 的 Search.Next

  • 使用 Streamlit 實施 RAG 增強的應用程序

本書適合誰:

如果您是一位在 Elastic 可觀察性、搜尋或網絡安全方面有經驗的數據專業人士,並希望擴展對向量搜尋的知識,那麼本書適合您。本書提供對搜尋應用擁有者、產品經理、可觀察性平台擁有者和安全運營中心專業人士有用的實用知識。具備 Python、使用機器學習模型和數據管理的經驗將幫助您充分利用本書。