Accelerate Model Training with PyTorch 2.X: Build more accurate models by boosting the model training process
Alves, Maicon Melo, Drummond, Lúcia Maria de Assumpção
- 出版商: Packt Publishing
- 出版日期: 2024-04-30
- 售價: $1,840
- 貴賓價: 9.5 折 $1,748
- 語言: 英文
- 頁數: 230
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1805120107
- ISBN-13: 9781805120100
-
相關分類:
DeepLearning
海外代購書籍(需單獨結帳)
相關主題
商品描述
Dramatically accelerate the building process of complex models using PyTorch to extract the best performance from any computing environment
Key Features- Reduce the model-building time by applying optimization techniques and approaches
- Harness the computing power of multiple devices and machines to boost the training process
- Focus on model quality by quickly evaluating different model configurations
- Purchase of the print or Kindle book includes a free PDF eBook
Penned by an expert in High-Performance Computing (HPC) with over 25 years of experience, this book is your guide to enhancing the performance of model training using PyTorch, one of the most widely adopted machine learning frameworks.
You'll start by understanding how model complexity impacts training time before discovering distinct levels of performance tuning to expedite the training process. You'll also learn how to use a new PyTorch feature to compile the model and train it faster, alongside learning how to benefit from specialized libraries to optimize the training process on the CPU. As you progress, you'll gain insights into building an efficient data pipeline to keep accelerators occupied during the entire training execution and explore strategies for reducing model complexity and adopting mixed precision to minimize computing time and memory consumption. The book will get you acquainted with distributed training and show you how to use PyTorch to harness the computing power of multicore systems and multi-GPU environments available on single or multiple machines.
By the end of this book, you'll be equipped with a suite of techniques, approaches, and strategies to speed up training, so you can focus on what really matters-building stunning models!
What you will learn- Compile the model to train it faster
- Use specialized libraries to optimize the training on the CPU
- Build a data pipeline to boost GPU execution
- Simplify the model through pruning and compression techniques
- Adopt automatic mixed precision without penalizing the model's accuracy
- Distribute the training step across multiple machines and devices
This book is for intermediate-level data scientists who want to learn how to leverage PyTorch to speed up the training process of their machine learning models by employing a set of optimization strategies and techniques. To make the most of this book, familiarity with basic concepts of machine learning, PyTorch, and Python is essential. However, there is no obligation to have a prior understanding of distributed computing, accelerators, or multicore processors.
Table of Contents- Deconstructing the Training Process
- Training Models Faster
- Compiling the Model
- Using Specialized Libraries
- Building an Efficient Data Pipeline
- Simplifying the Model
- Adopting Mixed Precision
- Distributed Training at a Glance
- Training with Multiple CPUs
- Training with Multiple GPUs
- Training with Multiple Machines
商品描述(中文翻譯)
Dramatically accelerate the building process of complex models using PyTorch to extract the best performance from any computing environment
主要特點
- 透過應用優化技巧和方法,減少模型建構時間
- 利用多個設備和機器的計算能力,加速訓練過程
- 透過快速評估不同模型配置,專注於模型品質
- 購買印刷版或Kindle電子書,可免費獲得PDF電子書
書籍描述
本書由一位在高效能運算(HPC)領域擁有超過25年經驗的專家撰寫,是您提升使用PyTorch進行模型訓練效能的指南,PyTorch是目前最廣泛使用的機器學習框架之一。
您將首先了解模型複雜度對訓練時間的影響,然後探索不同層次的效能調優方法,以加快訓練過程。您還將學習如何使用PyTorch的新功能來編譯模型並加快訓練速度,同時學習如何利用專門的庫來優化在CPU上的訓練過程。隨著學習的深入,您將瞭解如何構建高效的數據管道,以確保加速器在整個訓練執行過程中保持忙碌,並探索減少模型複雜度和採用混合精度以最小化計算時間和內存消耗的策略。本書還將使您熟悉分散式訓練,並向您展示如何使用PyTorch利用單個或多個機器上提供的多核系統和多GPU環境的計算能力。
通過閱讀本書,您將掌握一套技巧、方法和策略,以加快訓練速度,讓您專注於真正重要的事情-構建出令人驚艷的模型!
您將學到什麼
- 編譯模型以加快訓練速度
- 使用專門的庫來優化在CPU上的訓練
- 構建數據管道以提升GPU執行效能
- 通過修剪和壓縮技術簡化模型
- 採用自動混合精度而不影響模型準確性
- 將訓練步驟分散在多個機器和設備上
本書適合對象
本書適合中級數據科學家,他們希望學習如何利用PyTorch通過一系列優化策略和技巧加快機器學習模型的訓練過程。為了充分利用本書,需要熟悉機器學習、PyTorch和Python的基本概念。然而,無需事先了解分散式計算、加速器或多核處理器的知識。
目錄
1. 解構訓練過程
2. 加快模型訓練速度
3. 編譯模型
4. 使用專門的庫
5. 構建高效的數據管道
6. 簡化模型
7. 採用混合精度
8. 分散式訓練概述
9. 使用多個CPU進行訓練
10. 使用多個GPU進行訓練
11. 使用多個機器進行訓練