10 Machine Learning Blueprints You Should Know for Cybersecurity: Protect your systems and boost your defenses with cutting-edge AI techniques
暫譯: 10 個你應該知道的機器學習藍圖以增強網路安全:利用尖端 AI 技術保護系統並提升防禦能力
Oak, Rajvardhan
- 出版商: Packt Publishing
- 出版日期: 2023-05-31
- 售價: $2,030
- 貴賓價: 9.5 折 $1,929
- 語言: 英文
- 頁數: 330
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1804619477
- ISBN-13: 9781804619476
-
相關分類:
人工智慧、Machine Learning、資訊安全
海外代購書籍(需單獨結帳)
相關主題
商品描述
Work on 10 practical projects, each with a blueprint for a different machine learning technique, and apply them in the real world to fight against cybercrime
Purchase of the print or Kindle book includes a free PDF eBook
Key Features:
- Learn how to frame a cyber security problem as a machine learning problem
- Examine your model for robustness against adversarial machine learning
- Build your portfolio, enhance your resume, and ace interviews to become a cybersecurity data scientist
Book Description:
Machine learning in security is harder than other domains because of the changing nature and abilities of adversaries, high stakes, and a lack of ground-truth data. This book will prepare machine learning practitioners to effectively handle tasks in the challenging yet exciting cybersecurity space.
The book begins by helping you understand how advanced ML algorithms work and shows you practical examples of how they can be applied to security-specific problems with Python - by using open source datasets or instructing you to create your own. In one exercise, you'll also use GPT 3.5, the secret sauce behind ChatGPT, to generate an artificial dataset of fabricated news. Later, you'll find out how to apply the expert knowledge and human-in-the-loop decision-making that is necessary in the cybersecurity space. This book is designed to address the lack of proper resources available for individuals interested in transitioning into a data scientist role in cybersecurity. It concludes with case studies, interview questions, and blueprints for four projects that you can use to enhance your portfolio.
By the end of this book, you'll be able to apply machine learning algorithms to detect malware, fake news, deep fakes, and more, along with implementing privacy-preserving machine learning techniques such as differentially private ML.
What You Will Learn:
- Use GNNs to build feature-rich graphs for bot detection and engineer graph-powered embeddings and features
- Discover how to apply ML techniques in the cybersecurity domain
- Apply state-of-the-art algorithms such as transformers and GNNs to solve security-related issues
- Leverage ML to solve modern security issues such as deep fake detection, machine-generated text identification, and stylometric analysis
- Apply privacy-preserving ML techniques and use differential privacy to protect user data while training ML models
- Build your own portfolio with end-to-end ML projects for cybersecurity
Who this book is for:
This book is for machine learning practitioners interested in applying their skills to solve cybersecurity issues. Cybersecurity workers looking to leverage ML methods will also find this book useful. An understanding of the fundamental machine learning concepts and beginner-level knowledge of Python programming are needed to grasp the concepts in this book. Whether you're a beginner or an experienced professional, this book offers a unique and valuable learning experience that'll help you develop the skills needed to protect your network and data against the ever-evolving threat landscape.
商品描述(中文翻譯)
進行10個實用專案,每個專案都有不同機器學習技術的藍圖,並在現實世界中應用它們以對抗網路犯罪
購買印刷版或Kindle書籍包括免費的PDF電子書
主要特色:
- 學習如何將網路安全問題框架化為機器學習問題
- 檢查您的模型在對抗性機器學習下的穩健性
- 建立您的作品集,增強您的履歷,並在面試中表現出色,成為網路安全數據科學家
書籍描述:
在安全領域,機器學習比其他領域更具挑戰性,因為對手的性質和能力不斷變化,風險高,且缺乏真實數據。本書將幫助機器學習從業者有效處理在這個充滿挑戰但又令人興奮的網路安全領域中的任務。
本書首先幫助您理解先進的機器學習算法如何運作,並展示如何將它們應用於安全特定問題的實際範例,使用Python - 通過使用開源數據集或指導您創建自己的數據集。在一個練習中,您還將使用GPT 3.5,ChatGPT背後的秘密武器,生成一個虛構新聞的人工數據集。稍後,您將了解如何在網路安全領域應用專家知識和人機協作的決策過程。本書旨在解決對於有意轉型為網路安全數據科學家的個人所缺乏的適當資源。最後,書中將提供案例研究、面試問題以及四個專案的藍圖,幫助您增強作品集。
在本書結束時,您將能夠應用機器學習算法來檢測惡意軟體、假新聞、深度偽造等,並實施隱私保護的機器學習技術,如差分隱私機器學習。
您將學到的內容:
- 使用GNN(圖神經網絡)構建豐富特徵的圖形以進行機器人檢測,並設計基於圖形的嵌入和特徵
- 發現如何在網路安全領域應用機器學習技術
- 應用最先進的算法,如變壓器和GNN,解決與安全相關的問題
- 利用機器學習解決現代安全問題,如深度偽造檢測、機器生成文本識別和風格分析
- 應用隱私保護的機器學習技術,並使用差分隱私在訓練機器學習模型時保護用戶數據
- 為網路安全構建自己的端到端機器學習專案作品集
本書適合誰:
本書適合有興趣將其技能應用於解決網路安全問題的機器學習從業者。希望利用機器學習方法的網路安全工作者也會發現本書有用。理解基本的機器學習概念和初級Python編程知識是掌握本書概念所需的。無論您是初學者還是經驗豐富的專業人士,本書都提供了獨特且有價值的學習體驗,幫助您發展保護您的網路和數據免受不斷演變的威脅環境所需的技能。