Machine Learning for Streaming Data with Python: Rapidly build practical online machine learning solutions using River and other top key frameworks
暫譯: 使用 Python 進行串流數據的機器學習:快速構建實用的在線機器學習解決方案,使用 River 和其他頂尖框架

Korstanje, Joos

  • 出版商: Packt Publishing
  • 出版日期: 2022-07-15
  • 售價: $1,930
  • 貴賓價: 9.5$1,834
  • 語言: 英文
  • 頁數: 258
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 180324836X
  • ISBN-13: 9781803248363
  • 相關分類: Python程式語言Machine Learning
  • 海外代購書籍(需單獨結帳)

商品描述

Apply machine learning to streaming data with the help of practical examples, and deal with challenges that surround streaming


Key Features:

  • Work on streaming use cases that are not taught in most data science courses
  • Gain experience with state-of-the-art tools for streaming data
  • Mitigate various challenges while handling streaming data


Book Description:

Streaming data is the new top technology to watch out for in the field of data science and machine learning. As business needs become more demanding, many use cases require real-time analysis as well as real-time machine learning. This book will help you to get up to speed with data analytics for streaming data and focus strongly on adapting machine learning and other analytics to the case of streaming data.

You will first learn about the architecture for streaming and real-time machine learning. Next, you will look at the state-of-the-art frameworks for streaming data like River. Later chapters will focus on various industrial use cases for streaming data like Online Anomaly Detection and others. As you progress, you will discover various challenges and learn how to mitigate them. In addition to this, you will learn best practices that will help you use streaming data to generate real-time insights.

By the end of this book, you will have gained the confidence you need to stream data in your machine learning models.


What You Will Learn:

  • Understand the challenges and advantages of working with streaming data
  • Develop real-time insights from streaming data
  • Understand the implementation of streaming data with various use cases to boost your knowledge
  • Develop a PCA alternative that can work on real-time data
  • Explore best practices for handling streaming data that you absolutely need to remember
  • Develop an API for real-time machine learning inference


Who this book is for:

This book is for data scientists and machine learning engineers who have a background in machine learning, are practice and technology-oriented, and want to learn how to apply machine learning to streaming data through practical examples with modern technologies. Although an understanding of basic Python and machine learning concepts is a must, no prior knowledge of streaming is required.

商品描述(中文翻譯)

應用機器學習於串流數據,並透過實際範例處理串流相關挑戰

主要特點:


  • 處理大多數數據科學課程中未教授的串流使用案例

  • 獲得使用最先進的串流數據工具的經驗

  • 在處理串流數據時減輕各種挑戰

書籍描述:
串流數據是數據科學和機器學習領域中值得關注的新技術。隨著商業需求變得越來越苛刻,許多使用案例需要即時分析以及即時機器學習。本書將幫助您掌握串流數據的數據分析,並強調將機器學習和其他分析方法適應於串流數據的情境。

您將首先了解串流和即時機器學習的架構。接下來,您將研究像 River 這樣的串流數據最先進框架。後面的章節將專注於各種串流數據的工業使用案例,例如在線異常檢測等。隨著進展,您將發現各種挑戰並學習如何減輕這些挑戰。此外,您還將學習最佳實踐,幫助您利用串流數據生成即時見解。

在本書結束時,您將獲得在機器學習模型中串流數據所需的信心。

您將學到的內容:


  • 理解處理串流數據的挑戰和優勢

  • 從串流數據中開發即時見解

  • 理解串流數據的實施,並通過各種使用案例提升您的知識

  • 開發可在即時數據上運作的 PCA 替代方案

  • 探索處理串流數據的最佳實踐,這些是您必須記住的

  • 開發即時機器學習推斷的 API

本書適合誰:
本書適合具有機器學習背景的數據科學家和機器學習工程師,他們以實踐和技術為導向,並希望通過現代技術的實際範例學習如何將機器學習應用於串流數據。雖然必須了解基本的 Python 和機器學習概念,但不需要具備串流的先前知識。