Machine Learning for Streaming Data with Python: Rapidly build practical online machine learning solutions using River and other top key frameworks

Korstanje, Joos

  • 出版商: Packt Publishing
  • 出版日期: 2022-07-15
  • 售價: $1,910
  • 貴賓價: 9.5$1,815
  • 語言: 英文
  • 頁數: 258
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 180324836X
  • ISBN-13: 9781803248363
  • 相關分類: Python程式語言Machine Learning
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Apply machine learning to streaming data with the help of practical examples, and deal with challenges that surround streaming


Key Features:

  • Work on streaming use cases that are not taught in most data science courses
  • Gain experience with state-of-the-art tools for streaming data
  • Mitigate various challenges while handling streaming data


Book Description:

Streaming data is the new top technology to watch out for in the field of data science and machine learning. As business needs become more demanding, many use cases require real-time analysis as well as real-time machine learning. This book will help you to get up to speed with data analytics for streaming data and focus strongly on adapting machine learning and other analytics to the case of streaming data.

You will first learn about the architecture for streaming and real-time machine learning. Next, you will look at the state-of-the-art frameworks for streaming data like River. Later chapters will focus on various industrial use cases for streaming data like Online Anomaly Detection and others. As you progress, you will discover various challenges and learn how to mitigate them. In addition to this, you will learn best practices that will help you use streaming data to generate real-time insights.

By the end of this book, you will have gained the confidence you need to stream data in your machine learning models.


What You Will Learn:

  • Understand the challenges and advantages of working with streaming data
  • Develop real-time insights from streaming data
  • Understand the implementation of streaming data with various use cases to boost your knowledge
  • Develop a PCA alternative that can work on real-time data
  • Explore best practices for handling streaming data that you absolutely need to remember
  • Develop an API for real-time machine learning inference


Who this book is for:

This book is for data scientists and machine learning engineers who have a background in machine learning, are practice and technology-oriented, and want to learn how to apply machine learning to streaming data through practical examples with modern technologies. Although an understanding of basic Python and machine learning concepts is a must, no prior knowledge of streaming is required.

商品描述(中文翻譯)

應用機器學習於流式數據,並透過實際範例處理相關挑戰

重點特色:
- 處理大多數資料科學課程未教授的流式使用案例
- 使用最先進的流式數據工具獲得實戰經驗
- 解決處理流式數據時的各種挑戰

書籍描述:
流式數據是數據科學和機器學習領域中值得關注的新技術。隨著業務需求變得更加苛刻,許多使用案例需要實時分析和實時機器學習。本書將幫助您快速掌握流式數據的數據分析,並專注於將機器學習和其他分析應用於流式數據的情況。

您將首先了解流式和實時機器學習的架構。接下來,您將研究流式數據的最先進框架,如River。後續章節將專注於流式數據的各種工業使用案例,如在線異常檢測等。隨著學習的進展,您將發現各種挑戰並學習如何解決它們。此外,您還將學習使用流式數據生成實時洞察力的最佳實踐。

通過閱讀本書,您將獲得在機器學習模型中流式數據的自信。

學到什麼:
- 瞭解處理流式數據的挑戰和優勢
- 從流式數據中開發實時洞察力
- 瞭解使用不同使用案例實現流式數據的方法,以提升您的知識
- 開發可在實時數據上運作的PCA替代方案
- 探索處理流式數據的最佳實踐,這是您必須記住的
- 開發用於實時機器學習推斷的API

本書適合對機器學習有基礎且實踐和技術導向的數據科學家和機器學習工程師,他們希望通過現代技術的實際範例來學習如何將機器學習應用於流式數據。雖然需要基本的Python和機器學習概念的理解,但不需要先備的流式數據知識。