3D Deep Learning with Python: Design and develop your computer vision model with 3D data using PyTorch3D and more (Paperback)
Ma, Xudong, Hegde, Vishakh, Yolyan, Lilit
- 出版商: Packt Publishing
- 出版日期: 2022-10-28
- 售價: $1,740
- 貴賓價: 9.5 折 $1,653
- 語言: 英文
- 頁數: 236
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1803247827
- ISBN-13: 9781803247823
-
相關分類:
Python、程式語言、DeepLearning、Computer Vision
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
$480$379 -
$505Processing 編程學習指南(原書第2版)
-
$390$371 -
$780$616 -
$880$748 -
$450$356 -
$1,440AR and VR Using the Webxr API: Learn to Create Immersive Content with Webgl, Three.Js, and A-Frame (Paperback)
-
$2,030$1,929 -
$407Java 從入門到精通, 6/e
-
$4,200$3,990 -
$500$395 -
$2,682Practical Machine Learning for Computer Vision: End-To-End Machine Learning for Images (Paperback)
-
$2,070AI and Machine Learning for On-Device Development: A Programmer's Guide
-
$1,805Optimizing Visual Studio Code for Python Development: Developing More Efficient and Effective Programs in Python
-
$2,300$2,185 -
$750$593 -
$539$512 -
$1,200$948 -
$1,950$1,853 -
$780$616 -
$630$498 -
$2,100$1,995 -
$720$562 -
$520$411 -
$780$616
相關主題
商品描述
Visualize and build deep learning models with 3D data using PyTorch3D and other Python frameworks to conquer real-world application challenges with ease
Key Features
- Understand 3D data processing with rendering, PyTorch optimization, and heterogeneous batching
- Implement differentiable rendering concepts with practical examples
- Discover how you can ease your work with the latest 3D deep learning techniques using PyTorch3D
Book Description
With this hands-on guide to 3D deep learning, developers working with 3D computer vision will be able to put their knowledge to work and get up and running in no time.
Complete with step-by-step explanations of essential concepts and practical examples, this book lets you explore and gain a thorough understanding of state-of-the-art 3D deep learning. You'll see how to use PyTorch3D for basic 3D mesh and point cloud data processing, including loading and saving ply and obj files, projecting 3D points into camera coordination using perspective camera models or orthographic camera models, rendering point clouds and meshes to images, and much more. As you implement some of the latest 3D deep learning algorithms, such as differential rendering, Nerf, synsin, and mesh RCNN, you'll realize how coding for these deep learning models becomes easier using the PyTorch3D library.
By the end of this deep learning book, you'll be ready to implement your own 3D deep learning models confidently.
What you will learn
- Develop 3D computer vision models for interacting with the environment
- Get to grips with 3D data handling with point clouds, meshes, ply, and obj file format
- Work with 3D geometry, camera models, and coordination and convert between them
- Understand concepts of rendering, shading, and more with ease
- Implement differential rendering for many 3D deep learning models
- Advanced state-of-the-art 3D deep learning models like Nerf, synsin, mesh RCNN
Who this book is for
This book is for beginner to intermediate-level machine learning practitioners, data scientists, ML engineers, and DL engineers who are looking to become well-versed with computer vision techniques using 3D data.
商品描述(中文翻譯)
使用PyTorch3D和其他Python框架,視覺化並構建深度學習模型,以應對現實世界的應用挑戰。
主要特點:
- 了解3D數據處理,包括渲染、PyTorch優化和異構批處理。
- 通過實際示例實現可微分渲染概念。
- 發現如何使用PyTorch3D輕鬆應用最新的3D深度學習技術。
書籍描述:
這本實用指南將幫助從事3D計算機視覺工作的開發人員迅速上手並投入使用。
書中通過逐步解釋基本概念和實際示例,讓您探索並深入了解最先進的3D深度學習。您將學習如何使用PyTorch3D進行基本的3D網格和點雲數據處理,包括加載和保存ply和obj文件,使用透視相機模型或正交相機模型將3D點投影到相機坐標系統,將點雲和網格渲染為圖像等等。當您實現一些最新的3D深度學習算法,如差分渲染、Nerf、synsin和mesh RCNN時,您將意識到使用PyTorch3D庫編寫這些深度學習模型變得更加容易。
通過閱讀本書,您將能夠自信地實現自己的3D深度學習模型。
您將學到什麼:
- 開發與環境交互的3D計算機視覺模型。
- 掌握點雲、網格、ply和obj文件格式的3D數據處理。
- 處理3D幾何、相機模型和坐標系統之間的轉換。
- 輕鬆理解渲染、著色等概念。
- 為許多3D深度學習模型實現差分渲染。
- 學習Nerf、synsin、mesh RCNN等先進的3D深度學習模型。
本書適合初級到中級的機器學習從業者、數據科學家、機器學習工程師和深度學習工程師,他們希望熟悉使用3D數據進行計算機視覺技術。
目錄大綱
- 3D data file formats - ply and obj, 3D coordination systems, camera models
- Basic rendering concepts, basic PyTorch optimization, heterogeneous batching
- Fitting using deformable mesh models
- Differentiable rendering basic concepts
- Differentiable volume rendering
- NeRF - Neural Radiance Fields
- GIRAFFE
- Human body 3D fitting using SMPL models
- Synsin - end-to-end view synthesis from a single image
- Mesh RCNN
目錄大綱(中文翻譯)
- 3D資料檔案格式 - ply和obj,3D座標系統,相機模型
- 基本渲染概念,基本的PyTorch優化,異質批次處理
- 使用可變形網格模型進行配適
- 可微分渲染的基本概念
- 可微分體積渲染
- NeRF - 神經輻射場
- GIRAFFE
- 使用SMPL模型進行人體3D配適
- Synsin - 從單張圖片進行端對端視角合成
- Mesh RCNN