3D Deep Learning with Python: Design and develop your computer vision model with 3D data using PyTorch3D and more (Paperback)
暫譯: 使用 Python 的 3D 深度學習:利用 PyTorch3D 等設計與開發您的電腦視覺模型,處理 3D 數據 (平裝本)

Ma, Xudong, Hegde, Vishakh, Yolyan, Lilit

  • 出版商: Packt Publishing
  • 出版日期: 2022-10-28
  • 售價: $1,760
  • 貴賓價: 9.5$1,672
  • 語言: 英文
  • 頁數: 236
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1803247827
  • ISBN-13: 9781803247823
  • 相關分類: Python程式語言DeepLearningComputer Vision
  • 海外代購書籍(需單獨結帳)

買這商品的人也買了...

相關主題

商品描述

Visualize and build deep learning models with 3D data using PyTorch3D and other Python frameworks to conquer real-world application challenges with ease

Key Features

  • Understand 3D data processing with rendering, PyTorch optimization, and heterogeneous batching
  • Implement differentiable rendering concepts with practical examples
  • Discover how you can ease your work with the latest 3D deep learning techniques using PyTorch3D

Book Description

With this hands-on guide to 3D deep learning, developers working with 3D computer vision will be able to put their knowledge to work and get up and running in no time.

Complete with step-by-step explanations of essential concepts and practical examples, this book lets you explore and gain a thorough understanding of state-of-the-art 3D deep learning. You'll see how to use PyTorch3D for basic 3D mesh and point cloud data processing, including loading and saving ply and obj files, projecting 3D points into camera coordination using perspective camera models or orthographic camera models, rendering point clouds and meshes to images, and much more. As you implement some of the latest 3D deep learning algorithms, such as differential rendering, Nerf, synsin, and mesh RCNN, you'll realize how coding for these deep learning models becomes easier using the PyTorch3D library.

By the end of this deep learning book, you'll be ready to implement your own 3D deep learning models confidently.

What you will learn

  • Develop 3D computer vision models for interacting with the environment
  • Get to grips with 3D data handling with point clouds, meshes, ply, and obj file format
  • Work with 3D geometry, camera models, and coordination and convert between them
  • Understand concepts of rendering, shading, and more with ease
  • Implement differential rendering for many 3D deep learning models
  • Advanced state-of-the-art 3D deep learning models like Nerf, synsin, mesh RCNN

Who this book is for

This book is for beginner to intermediate-level machine learning practitioners, data scientists, ML engineers, and DL engineers who are looking to become well-versed with computer vision techniques using 3D data.

 

商品描述(中文翻譯)

視覺化並使用 PyTorch3D 及其他 Python 框架構建深度學習模型,輕鬆克服現實世界應用挑戰

主要特點

- 理解 3D 數據處理,包括渲染、PyTorch 優化和異質批次處理
- 使用實際範例實現可微分渲染概念
- 探索如何利用最新的 3D 深度學習技術使用 PyTorch3D 來簡化工作

書籍描述

這本 3D 深度學習的實用指南將幫助從事 3D 電腦視覺的開發者迅速將所學知識付諸實踐,並快速上手。

本書提供了關鍵概念的逐步解釋和實際範例,讓您探索並深入理解最先進的 3D 深度學習。您將學會如何使用 PyTorch3D 進行基本的 3D 網格和點雲數據處理,包括加載和保存 ply 和 obj 文件,使用透視相機模型或正交相機模型將 3D 點投影到相機坐標系中,將點雲和網格渲染為圖像,等等。在實現一些最新的 3D 深度學習算法,如可微分渲染、Nerf、synsin 和 mesh RCNN 時,您將發現使用 PyTorch3D 庫編寫這些深度學習模型變得更加容易。

在這本深度學習書籍結束時,您將能夠自信地實現自己的 3D 深度學習模型。

您將學到的內容

- 開發用於與環境互動的 3D 電腦視覺模型
- 熟悉點雲、網格、ply 和 obj 文件格式的 3D 數據處理
- 處理 3D 幾何、相機模型和坐標系並進行轉換
- 輕鬆理解渲染、陰影等概念
- 為多個 3D 深度學習模型實現可微分渲染
- 先進的最先進 3D 深度學習模型,如 Nerf、synsin 和 mesh RCNN

本書適合對象

本書適合初學者到中級的機器學習從業者、數據科學家、機器學習工程師和深度學習工程師,旨在幫助他們熟悉使用 3D 數據的電腦視覺技術。

目錄大綱

  1. 3D data file formats - ply and obj, 3D coordination systems, camera models
  2. Basic rendering concepts, basic PyTorch optimization, heterogeneous batching
  3. Fitting using deformable mesh models
  4. Differentiable rendering basic concepts
  5. Differentiable volume rendering
  6. NeRF - Neural Radiance Fields
  7. GIRAFFE
  8. Human body 3D fitting using SMPL models
  9. Synsin - end-to-end view synthesis from a single image
  10. Mesh RCNN

目錄大綱(中文翻譯)


  1. 3D data file formats - ply and obj, 3D coordination systems, camera models

  2. Basic rendering concepts, basic PyTorch optimization, heterogeneous batching

  3. Fitting using deformable mesh models

  4. Differentiable rendering basic concepts

  5. Differentiable volume rendering

  6. NeRF - Neural Radiance Fields

  7. GIRAFFE

  8. Human body 3D fitting using SMPL models

  9. Synsin - end-to-end view synthesis from a single image

  10. Mesh RCNN