50 Algorithms Every Programmer Should Know : An unbeatable arsenal of algorithmic solutions for real-world problems, 2/e (Paperback) (每位程式設計師必知的50種演算法:解決現實問題的無敵演算法武器庫,第二版)
Ahmad, Imran
- 出版商: Packt Publishing
- 出版日期: 2023-09-29
- 售價: $1,860
- 貴賓價: 9.5 折 $1,767
- 語言: 英文
- 頁數: 538
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1803247762
- ISBN-13: 9781803247762
-
相關分類:
Algorithms-data-structures
立即出貨 (庫存=1)
買這商品的人也買了...
-
$534$507 -
$2,200$2,090 -
$1,663Beautiful C++: 30 Core Guidelines for Writing Clean, Safe, and Fast Code (Paperback)
-
$654$621 -
$1,900$1,805 -
$2,820$2,679 -
$760多處理器編程的藝術, 2/e (The Art of Multiprocessor Programming, 2/e)
-
$654$621 -
$1,900$1,805 -
$708$673 -
$560算法的樂趣, 2/e
-
$658C++20 代碼整潔之道:可持續軟件開發模式實踐 (原書第2版) (Clean C++20: Sustainable Software Development Patterns and Best Practices, 2/e)
-
$1,940$1,843 -
$509數以達理:量化研發管理指南
-
$1,900$1,805 -
$2,223$2,106 -
$465CPU 眼裡的 C/C++
-
$2,185Automating Data Quality Monitoring: Scaling Beyond Rules with Machine Learning (Paperback)
-
$2,660Head First Software Architecture: A Learner's Guide to Architectural Thinking (Paperback)
-
$1,650$1,568 -
$301基於近鄰思想和同步模型的聚類算法
-
$1,980$1,881 -
$2,242$2,124 -
$1,650$1,568 -
$556C++ 之美:代碼簡潔、安全又跑得快的 30個要訣 (Beautiful C++: 30 Core Guidelines for Writing Clean, Safe, and Fast Code)
相關主題
商品描述
Solve classic computer science problems from fundamental algorithms, such as sorting and searching, to modern algorithms in machine learning and cryptography
Key Features:
- Discussion on Advanced Deep Learning Architectures
- New chapters on sequential models explaining modern deep learning techniques, like LSTMs, GRUs, and RNNs and Large Language Models (LLMs)
- Explore newer topics, such as how to handle hidden bias in data and the explainability of the algorithms
- Get to grips with different programming algorithms and choose the right data structures for their optimal implementation
Book Description:
The ability to use algorithms to solve real-world problems is a must-have skill for any developer or programmer. This book will help you not only to develop the skills to select and use an algorithm to tackle problems in the real world by understanding how it works.
You'll start with an introduction to algorithms and discover various algorithm design techniques, before exploring how to implement different types of algorithms, with the help of practical examples. As you advance, you'll learn about linear programming, page ranking, and graphs, and even work with machine learning algorithms to understand the math and logic behind them.
Case studies will show you how to apply these algorithms optimally before you focus on deep learning algorithms and will learn about different types of deep learning models along with their practical use.
You will also learn about modern sequential models and their variants, algorithms, methodologies, and architectures that used to implement Large Language Models (LLMs) such as ChatGPT.
Finally, you'll become well versed in techniques that enable parallel processing, giving you the ability to use these algorithms for compute-intensive tasks.
By the end of this programming book, you'll have become adept at solving real-world computational problems by using a wide range of algorithms.
What You Will Learn:
- Design algorithms for solving complex problems
- Become familiar with neural networks and deep learning techniques
- Explore existing data structures and algorithms found in Python libraries
- Implement graph algorithms for fraud detection using network analysis
- Work with machine learning algorithms to cluster similar tweets and process Twitter data in real time
- Create a recommendation engine that suggests relevant movies to subscribers
- Implement foolproof security using symmetric and asymmetric encryption on Google Cloud Platform
Who this book is for:
This computer science book is for programmers or developers who want to understand the use of algorithms for problem-solving and writing efficient code.
Whether you are a beginner looking to learn the most used algorithms concisely or an experienced programmer looking to explore cutting-edge algorithms in data science, machine learning, and cryptography, you'll find this book useful.
Python programming experience is a must, knowledge of data science will be helpful but not necessary.
商品描述(中文翻譯)
解決從基本算法(如排序和搜索)到機器學習和密碼學中的現代算法等經典計算機科學問題。
主要特點:
- 討論高級深度學習架構
- 新增關於序列模型的章節,解釋現代深度學習技術,如LSTMs、GRUs、RNNs和大型語言模型(LLMs)
- 探索新的主題,例如如何處理數據中的隱藏偏差和算法的可解釋性
- 掌握不同的編程算法,並選擇最佳實現的適當數據結構
書籍描述:
能夠使用算法解決現實世界問題是任何開發人員或程序員必備的技能。本書將幫助您通過了解算法的工作原理,不僅開發選擇和使用算法解決現實世界問題的技能。
您將從算法介紹開始,探索各種算法設計技巧,然後通過實際示例探索如何實現不同類型的算法。隨著進一步的學習,您將了解線性規劃、頁面排名和圖形,甚至使用機器學習算法來理解它們背後的數學和邏輯。
案例研究將向您展示如何最佳應用這些算法,然後您將專注於深度學習算法,並了解不同類型的深度學習模型及其實際用途。
您還將學習現代序列模型及其變體、算法、方法論和架構,用於實現大型語言模型(LLMs),如ChatGPT。
最後,您將熟練掌握並行處理技術,使您能夠將這些算法應用於計算密集型任務。
通過閱讀本書,您將能夠使用各種算法解決現實世界的計算問題。
學到的內容:
- 設計解決複雜問題的算法
- 熟悉神經網絡和深度學習技術
- 探索Python庫中的現有數據結構和算法
- 使用圖形算法進行欺詐檢測和網絡分析
- 使用機器學習算法對相似推文進行聚類並實時處理Twitter數據
- 創建一個推薦引擎,為訂閱者提供相關電影建議
- 在Google Cloud Platform上使用對稱和非對稱加密實現無懈可擊的安全性
本書適合對解決問題和編寫高效代碼的算法使用有興趣的程序員或開發人員。
無論您是初學者,希望簡明地學習最常用的算法,還是有經驗的程序員,希望探索數據科學、機器學習和密碼學等尖端算法,本書都會對您有所幫助。
需要具備Python編程經驗,對數據科學的了解將有所幫助,但不是必需的。