Machine Learning for Time-Series with Python: Forecast, predict, and detect anomalies with state-of-the-art machine learning methods (Paperback)
暫譯: 使用 Python 進行時間序列的機器學習:預測、預測及檢測異常的最先進機器學習方法 (平裝本)
Auffarth, Ben
- 出版商: Packt Publishing
- 出版日期: 2021-10-29
- 售價: $1,980
- 貴賓價: 9.5 折 $1,881
- 語言: 英文
- 頁數: 370
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1801819629
- ISBN-13: 9781801819626
-
相關分類:
Python、程式語言、Machine Learning
立即出貨 (庫存=1)
買這商品的人也買了...
-
$258$245 -
$354$336 -
$520$406 -
$414$393 -
$403速通機器學習
-
$611$575 -
$880$695 -
$1,960$1,862 -
$1,892Time Series Forecasting in Python (Paperback)
-
$714$678 -
$1,014$963 -
$352Python大數據分析Big Data Analysis with Python
-
$774$735 -
$419$398 -
$254數據挖掘技術(微課視頻版)
-
$594$564 -
$600$570 -
$458R語言數據分析從入門到精通
-
$1,015資料分析與預測演算法:基於 R語言
-
$359$341 -
$454深度學習與大模型基礎(簡體書)
-
$301最優化理論與智能算法
-
$300$270 -
$352PYTHON 金融大數據分析快速入門與案例詳解
-
$403ESG投資
商品描述
Become proficient in deriving insights from time-series data and analyzing a model's performance
Key Features:
- Explore popular and modern machine learning methods including the latest online and deep learning algorithms
- Learn to increase the accuracy of your predictions by matching the right model with the right problem
- Master time-series via real-world case studies on operations management, digital marketing, finance, and healthcare
Book Description:
Machine learning has emerged as a powerful tool to understand hidden complexities in time-series datasets, which frequently need to be analyzed in areas as diverse as healthcare, economics, digital marketing, and social sciences. These datasets are essential for forecasting and predicting outcomes or for detecting anomalies to support informed decision making.
This book covers Python basics for time-series and builds your understanding of traditional autoregressive models as well as modern non-parametric models. You will become confident with loading time-series datasets from any source, deep learning models like recurrent neural networks and causal convolutional network models, and gradient boosting with feature engineering.
Machine Learning for Time-Series with Python explains the theory behind several useful models and guides you in matching the right model to the right problem. The book also includes real-world case studies covering weather, traffic, biking, and stock market data.
By the end of this book, you will be proficient in effectively analyzing time-series datasets with machine learning principles.
What You Will Learn:
- Understand the main classes of time-series and learn how to detect outliers and patterns
- Choose the right method to solve time-series problems
- Characterize seasonal and correlation patterns through autocorrelation and statistical techniques
- Get to grips with time-series data visualization
- Understand classical time-series models like ARMA and ARIMA
- Implement deep learning models like Gaussian processes and transformers and state-of-the-art machine learning models
- Become familiar with many libraries like prophet, xgboost, and TensorFlow
Who this book is for:
This book is ideal for data analysts, data scientists, and Python developers who are looking to perform time-series analysis to effectively predict outcomes. Basic knowledge of the Python language is essential. Familiarity with statistics is desirable.
商品描述(中文翻譯)
掌握從時間序列數據中提取洞察和分析模型性能的能力
主要特點:
- 探索流行的現代機器學習方法,包括最新的在線和深度學習算法
- 學習通過將正確的模型與正確的問題匹配來提高預測的準確性
- 通過有關運營管理、數位行銷、金融和醫療保健的實際案例研究,精通時間序列分析
書籍描述:
機器學習已成為理解時間序列數據集隱藏複雜性的強大工具,這些數據集經常需要在醫療保健、經濟學、數位行銷和社會科學等多個領域進行分析。這些數據集對於預測和預測結果或檢測異常以支持明智的決策至關重要。
本書涵蓋了時間序列的Python基礎知識,並建立您對傳統自回歸模型以及現代非參數模型的理解。您將能夠自信地從任何來源加載時間序列數據集,使用深度學習模型如遞歸神經網絡和因果卷積網絡模型,以及進行特徵工程的梯度提升。
《使用Python進行時間序列的機器學習》解釋了幾個有用模型背後的理論,並指導您將正確的模型與正確的問題匹配。本書還包括涵蓋天氣、交通、騎行和股市數據的實際案例研究。
在本書結束時,您將能夠熟練地運用機器學習原則有效分析時間序列數據集。
您將學到的內容:
- 理解時間序列的主要類別,學習如何檢測異常值和模式
- 選擇正確的方法來解決時間序列問題
- 通過自相關和統計技術描述季節性和相關性模式
- 掌握時間序列數據可視化
- 理解經典的時間序列模型,如ARMA和ARIMA
- 實現深度學習模型,如高斯過程和變壓器,以及最先進的機器學習模型
- 熟悉許多庫,如prophet、xgboost和TensorFlow
本書適合誰:
本書非常適合數據分析師、數據科學家和希望進行時間序列分析以有效預測結果的Python開發者。具備基本的Python語言知識是必需的,熟悉統計學則更為理想。