Data Lakehouse in Action: Architecting a modern and scalable data analytics platform
暫譯: 數據湖屋實戰:架構現代化且可擴展的數據分析平台
Menon, Pradeep
- 出版商: Packt Publishing
- 出版日期: 2022-03-17
- 售價: $1,600
- 貴賓價: 9.5 折 $1,520
- 語言: 英文
- 頁數: 206
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1801815933
- ISBN-13: 9781801815932
-
相關分類:
JVM 語言、Data Science
立即出貨 (庫存=1)
商品描述
Propose a new scalable data architecture paradigm, Data Lakehouse, that addresses the limitations of current data architecture patterns
Key Features
- Understand how data is ingested, stored, served, governed, and secured for enabling data analytics
- Explore a practical way to implement Data Lakehouse using cloud computing platforms like Azure
- Combine multiple architectural patterns based on an organization's needs and maturity level
Book Description
The Data Lakehouse architecture is a new paradigm that enables large-scale analytics. This book will guide you in developing data architecture in the right way to ensure your organization's success.
The first part of the book discusses the different data architectural patterns used in the past and the need for a new architectural paradigm, as well as the drivers that have caused this change. It covers the principles that govern the target architecture, the components that form the Data Lakehouse architecture, and the rationale and need for those components. The second part deep dives into the different layers of Data Lakehouse. It covers various scenarios and components for data ingestion, storage, data processing, data serving, analytics, governance, and data security. The book's third part focuses on the practical implementation of the Data Lakehouse architecture in a cloud computing platform. It focuses on various ways to combine the Data Lakehouse pattern to realize macro-patterns, such as Data Mesh and Data Hub-Spoke, based on the organization's needs and maturity level. The frameworks introduced will be practical and organizations can readily benefit from their application.
By the end of this book, you'll clearly understand how to implement the Data Lakehouse architecture pattern in a scalable, agile, and cost-effective manner.
What you will learn
- Understand the evolution of the Data Architecture patterns for analytics
- Become well versed in the Data Lakehouse pattern and how it enables data analytics
- Focus on methods to ingest, process, store, and govern data in a Data Lakehouse architecture
- Learn techniques to serve data and perform analytics in a Data Lakehouse architecture
- Cover methods to secure the data in a Data Lakehouse architecture
- Implement Data Lakehouse in a cloud computing platform such as Azure
- Combine Data Lakehouse in a macro-architecture pattern such as Data Mesh
Who this book is for
This book is for data architects, big data engineers, data strategists and practitioners, data stewards, and cloud computing practitioners looking to become well-versed with modern data architecture patterns to enable large-scale analytics. Basic knowledge of data architecture and familiarity with data warehousing concepts are required.
商品描述(中文翻譯)
**提出一種新的可擴展數據架構範式,數據湖屋(Data Lakehouse),以解決當前數據架構模式的限制**
#### 主要特點
- 了解數據如何被攝取、存儲、提供、管理和保護,以促進數據分析
- 探索使用雲計算平台(如 Azure)實現數據湖屋的實用方法
- 根據組織的需求和成熟度水平結合多種架構模式
#### 書籍描述
數據湖屋架構是一種新的範式,能夠實現大規模分析。本書將指導您以正確的方式開發數據架構,以確保您組織的成功。
本書的第一部分討論了過去使用的不同數據架構模式以及對新架構範式的需求,還有導致這一變化的驅動因素。它涵蓋了支配目標架構的原則、構成數據湖屋架構的組件,以及這些組件的理由和需求。第二部分深入探討數據湖屋的不同層次。它涵蓋了數據攝取、存儲、數據處理、數據提供、分析、治理和數據安全的各種場景和組件。本書的第三部分專注於在雲計算平台上實際實施數據湖屋架構。它專注於根據組織的需求和成熟度水平,結合數據湖屋模式來實現宏觀模式,如數據網格(Data Mesh)和數據中心-分支(Data Hub-Spoke)。所介紹的框架將是實用的,組織可以直接從其應用中受益。
在本書結束時,您將清楚了解如何以可擴展、靈活和具成本效益的方式實施數據湖屋架構模式。
#### 您將學到什麼
- 了解數據架構模式在分析中的演變
- 熟悉數據湖屋模式及其如何促進數據分析
- 專注於在數據湖屋架構中攝取、處理、存儲和管理數據的方法
- 學習在數據湖屋架構中提供數據和執行分析的技術
- 涵蓋在數據湖屋架構中保護數據的方法
- 在雲計算平台(如 Azure)上實施數據湖屋
- 將數據湖屋結合到宏觀架構模式中,如數據網格
#### 本書適合誰
本書適合數據架構師、大數據工程師、數據策略師和實踐者、數據管理者以及希望熟悉現代數據架構模式以促進大規模分析的雲計算從業者。需要具備基本的數據架構知識和對數據倉儲概念的熟悉。
目錄大綱
1. Introducing the Evolution of Data Analytics Patterns
2. The Data Lakehouse Architecture Overview
3. Ingesting and Processing Data in a Lakehouse
4. Storing and Serving Data in a Data Lakehouse
5. Deriving Insights from a Data Lakehouse
6. Applying Data Governance in a Data Lakehouse
7. Applying Data Security in a Data Lakehouse
8. Implementing a Data Lakehouse on Microsoft Azure
9. Scaling the Data Lakehouse Architecture
目錄大綱(中文翻譯)
1. Introducing the Evolution of Data Analytics Patterns
2. The Data Lakehouse Architecture Overview
3. Ingesting and Processing Data in a Lakehouse
4. Storing and Serving Data in a Data Lakehouse
5. Deriving Insights from a Data Lakehouse
6. Applying Data Governance in a Data Lakehouse
7. Applying Data Security in a Data Lakehouse
8. Implementing a Data Lakehouse on Microsoft Azure
9. Scaling the Data Lakehouse Architecture