Practical Machine Learning on Databricks: Seamlessly transition ML models and MLOps on Databricks (Paperback)
暫譯: Databricks上的實用機器學習:無縫轉換ML模型和MLOps於Databricks (平裝本)

Sinha, Debu

  • 出版商: Packt Publishing
  • 出版日期: 2023-11-24
  • 售價: $1,750
  • 貴賓價: 9.5$1,663
  • 語言: 英文
  • 頁數: 244
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1801812039
  • ISBN-13: 9781801812030
  • 相關分類: Machine Learning
  • 立即出貨 (庫存=1)

買這商品的人也買了...

相關主題

商品描述

Take your machine learning skills to the next level by mastering databricks and building robust ML pipeline solutions for future ML innovations

 

Key Features:

 

  • Learn to build robust ML pipeline solutions for databricks transition
  • Master commonly available features like AutoML and MLflow
  • Leverage data governance and model deployment using MLflow model registry
  • Purchase of the print or Kindle book includes a free PDF eBook

 

Book Description:

 

Unleash the potential of databricks for end-to-end machine learning with this comprehensive guide, tailored for experienced data scientists and developers transitioning from DIY or other cloud platforms. Building on a strong foundation in Python, Practical Machine Learning on Databricks serves as your roadmap from development to production, covering all intermediary steps using the databricks platform.

 

You'll start with an overview of machine learning applications, databricks platform features, and MLflow. Next, you'll dive into data preparation, model selection, and training essentials and discover the power of databricks feature store for precomputing feature tables. You'll also learn to kickstart your projects using databricks AutoML and automate retraining and deployment through databricks workflows.

 

By the end of this book, you'll have mastered MLflow for experiment tracking, collaboration, and advanced use cases like model interpretability and governance. The book is enriched with hands-on example code at every step. While primarily focused on generally available features, the book equips you to easily adapt to future innovations in machine learning, databricks, and MLflow.

 

What You Will Learn:

 

  • Transition smoothly from DIY setups to databricks
  • Master AutoML for quick ML experiment setup
  • Automate model retraining and deployment
  • Leverage databricks feature store for data prep
  • Use MLflow for effective experiment tracking
  • Gain practical insights for scalable ML solutions
  • Find out how to handle model drifts in production environments

 

Who this book is for:

 

This book is for experienced data scientists, engineers, and developers proficient in Python, statistics, and ML lifecycle looking to transition to databricks from DIY clouds. Introductory Spark knowledge is a must to make the most out of this book, however, end-to-end ML workflows will be covered. If you aim to accelerate your machine learning workflows and deploy scalable, robust solutions, this book is an indispensable resource.

商品描述(中文翻譯)

透過掌握 Databricks 並建立穩健的機器學習管道解決方案,將您的機器學習技能提升到新境界,以應對未來的機器學習創新

主要特色:


  • 學習為 Databricks 過渡建立穩健的機器學習管道解決方案

  • 掌握常見的功能,如 AutoML 和 MLflow

  • 利用 MLflow 模型註冊表進行數據治理和模型部署

  • 購買印刷版或 Kindle 書籍可獲得免費 PDF 電子書

書籍描述:

釋放 Databricks 在端到端機器學習中的潛力,這本全面的指南專為經驗豐富的數據科學家和開發人員設計,幫助他們從 DIY 或其他雲平台過渡。基於 Python 的堅實基礎,《在 Databricks 上的實用機器學習》將作為您從開發到生產的路線圖,涵蓋使用 Databricks 平台的所有中介步驟。

您將從機器學習應用、Databricks 平台功能和 MLflow 的概述開始。接下來,您將深入數據準備、模型選擇和訓練要素,並發現 Databricks 特徵庫在預計算特徵表方面的強大功能。您還將學習如何使用 Databricks AutoML 啟動項目,並通過 Databricks 工作流程自動化再訓練和部署。

在本書結束時,您將掌握 MLflow 以進行實驗追蹤、協作以及模型可解釋性和治理等高級用例。本書在每一步都充實了實作範例代碼。雖然主要集中於一般可用的功能,但本書使您能夠輕鬆適應未來在機器學習、Databricks 和 MLflow 中的創新。

您將學到什麼:


  • 順利從 DIY 設置過渡到 Databricks

  • 掌握 AutoML 以快速設置機器學習實驗

  • 自動化模型再訓練和部署

  • 利用 Databricks 特徵庫進行數據準備

  • 使用 MLflow 進行有效的實驗追蹤

  • 獲得可擴展機器學習解決方案的實用見解

  • 了解如何處理生產環境中的模型漂移

本書適合誰:

本書適合精通 Python、統計學和機器學習生命周期的經驗豐富的數據科學家、工程師和開發人員,旨在從 DIY 雲平台過渡到 Databricks。具備基本的 Spark 知識是充分利用本書的必要條件,然而,端到端的機器學習工作流程將會涵蓋。如果您希望加速機器學習工作流程並部署可擴展、穩健的解決方案,本書是不可或缺的資源。