Hands-On Data Preprocessing in Python: Learn how to effectively prepare data for successful data analytics
暫譯: Python 實戰數據預處理:學習如何有效準備數據以進行成功的數據分析

Jafari, Roy

買這商品的人也買了...

商品描述

This book will make the link between data cleaning and preprocessing to help you design effective data analytic solutions


Key Features:

  • Develop the skills to perform data cleaning, data integration, data reduction, and data transformation
  • Get ready to make the most of your data with powerful data transformation and massaging techniques
  • Perform thorough data cleaning, such as dealing with missing values and outliers


Book Description:

Data preprocessing is the first step in data visualization, data analytics, and machine learning, where data is prepared for analytics functions to get the best possible insights. Around 90% of the time spent on data analytics, data visualization, and machine learning projects is dedicated to performing data preprocessing.

This book will equip you with the optimum data preprocessing techniques from multiple perspectives. You'll learn about different technical and analytical aspects of data preprocessing - data collection, data cleaning, data integration, data reduction, and data transformation - and get to grips with implementing them using the open source Python programming environment. This book will provide a comprehensive articulation of data preprocessing, its whys and hows, and help you identify opportunities where data analytics could lead to more effective decision making. It also demonstrates the role of data management systems and technologies for effective analytics and how to use APIs to pull data.

By the end of this Python data preprocessing book, you'll be able to use Python to read, manipulate, and analyze data; perform data cleaning, integration, reduction, and transformation techniques; and handle outliers or missing values to effectively prepare data for analytic tools.



What You Will Learn:

  • Use Python to perform analytics functions on your data
  • Understand the role of databases and how to effectively pull data from databases
  • Perform data preprocessing steps defined by your analytics goals
  • Recognize and resolve data integration challenges
  • Identify the need for data reduction and execute it
  • Detect opportunities to improve analytics with data transformation


Who this book is for:

Junior and senior data analysts, business intelligence professionals, engineering undergraduates, and data enthusiasts looking to perform preprocessing and data cleaning on large amounts of data will find this book useful. Basic programming skills, such as working with variables, conditionals, and loops, along with beginner-level knowledge of Python and simple analytics experience, are assumed.

商品描述(中文翻譯)

這本書將連結數據清理與預處理,幫助您設計有效的數據分析解決方案。

主要特點:
- 發展執行數據清理、數據整合、數據減少和數據轉換的技能
- 準備充分利用您的數據,使用強大的數據轉換和處理技術
- 執行徹底的數據清理,例如處理缺失值和異常值

書籍描述:
數據預處理是數據視覺化、數據分析和機器學習的第一步,數據在此階段被準備以便進行分析功能,以獲得最佳的見解。在數據分析、數據視覺化和機器學習專案中,約90%的時間都花在執行數據預處理上。

這本書將從多個角度為您提供最佳的數據預處理技術。您將學習數據預處理的不同技術和分析方面——數據收集、數據清理、數據整合、數據減少和數據轉換,並掌握如何使用開源的Python編程環境來實現這些技術。這本書將全面闡述數據預處理的原因和方法,並幫助您識別數據分析能夠促進更有效決策的機會。它還展示了數據管理系統和技術在有效分析中的角色,以及如何使用API來提取數據。

在這本Python數據預處理書籍結束時,您將能夠使用Python來讀取、操作和分析數據;執行數據清理、整合、減少和轉換技術;並處理異常值或缺失值,以有效準備數據供分析工具使用。

您將學到的內容:
- 使用Python對您的數據執行分析功能
- 理解數據庫的角色以及如何有效地從數據庫中提取數據
- 根據您的分析目標執行數據預處理步驟
- 辨識並解決數據整合挑戰
- 確認數據減少的需求並執行
- 發現通過數據轉換改善分析的機會

本書適合對象:
初級和高級數據分析師、商業智慧專業人士、工程本科生以及希望對大量數據進行預處理和數據清理的數據愛好者將會發現這本書非常有用。假設具備基本的編程技能,例如變數、條件語句和迴圈的使用,以及初級的Python知識和簡單的分析經驗。

最後瀏覽商品 (20)