Deep Learning with MXNet Cookbook: Deep dive into a variety of recipes to create and implement AI models on MXNet

P. Torres, Andrés

  • 出版商: Packt Publishing
  • 出版日期: 2023-12-29
  • 售價: $2,010
  • 貴賓價: 9.5$1,910
  • 語言: 英文
  • 頁數: 370
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1800569602
  • ISBN-13: 9781800569607
  • 相關分類: 人工智慧DeepLearning
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Gain practical, recipe-based insights into the world of deep learning using Apache MXNet for flexible and efficient research prototyping, training, and deployment to production.


Key Features:


  • A step-by-step tutorial towards using MXNet products to create scalable deep learning applications
  • Implement tasks such as transfer learning, transformers, and more with the required speed and scalability
  • Analyze the performance of models and fine-tune them for accuracy, scalability, and speed


Book Description:


MXNet is an open-source deep learning framework that allows you to train and deploy neural network models and implement state-of-the-art (SOTA) architectures in CV, NLP, and more. With this cookbook, you will be able to construct fast, scalable deep learning solutions using Apache MXNet.


This book will start by showing you the different versions of MXNet and what version to choose before installing your library. You will learn to start using MXNet/Gluon libraries to solve classification and regression problems and get an idea on the inner workings of these libraries. This book will also show how to use MXNet to analyze toy datasets in the areas of numerical regression, data classification, picture classification, and text classification. You'll also learn to build and train deep-learning neural network architectures from scratch, before moving on to complex concepts like transfer learning. You'll learn to construct and deploy neural network architectures including CNN, RNN, LSTMs, Transformers, and integrate these models into your applications.


By the end of the book, you will be able to utilize the MXNet and Gluon libraries to create and train deep learning networks using GPUs and learn how to deploy them efficiently in different environments.


What You Will Learn:


  • Understand MXNet and Gluon libraries and their advantages
  • Build and train network models from scratch using MXNet
  • Apply transfer learning for more complex, fine-tuned network architectures
  • Solve modern Computer Vision and NLP problems using neural network techniques
  • Train and evaluate models using GPUs and learn how to deploy them
  • Explore state-of-the-art models with GPUs and leveraging modern optimization techniques
  • Improve inference run-times and deploy models in production


Who this book is for:


This book is ideal for Data scientists, machine learning engineers, and developers who want to work with Apache MXNet for building fast, scalable deep learning solutions. The reader is expected to have a good understanding of Python programming and a working environment with Python 3.6+. A good theoretical understanding of mathematics for deep learning will be beneficial.

商品描述(中文翻譯)

這本書提供了基於食譜的實用見解,介紹了使用Apache MXNet進行深度學習的世界,以便進行靈活高效的研究原型、訓練和部署到生產環境。

主要特點:
- 逐步教程,使用MXNet產品創建可擴展的深度學習應用程序
- 使用所需的速度和可擴展性實現轉移學習、轉換器等任務
- 分析模型的性能,並對其進行準確性、可擴展性和速度的微調

書籍描述:
MXNet是一個開源的深度學習框架,可以訓練和部署神經網絡模型,並實現在計算機視覺、自然語言處理等領域的最新架構。通過這本食譜,您將能夠使用Apache MXNet構建快速、可擴展的深度學習解決方案。

本書將首先向您展示MXNet的不同版本以及在安裝庫之前應該選擇哪個版本。您將學習如何開始使用MXNet/Gluon庫來解決分類和回歸問題,並了解這些庫的內部運作方式。本書還將展示如何使用MXNet在數值回歸、數據分類、圖片分類和文本分類等領域分析玩具數據集。您還將學習從頭開始構建和訓練深度學習神經網絡架構,然後深入研究轉移學習等複雜概念。您將學習構建和部署包括CNN、RNN、LSTMs、Transformers在內的神經網絡架構,並將這些模型集成到應用程序中。

通過閱讀本書,您將能夠利用MXNet和Gluon庫在GPU上創建和訓練深度學習網絡,並學習如何在不同環境中高效部署它們。

您將學到的內容:
- 了解MXNet和Gluon庫及其優勢
- 使用MXNet從頭開始構建和訓練網絡模型
- 應用轉移學習進行更複雜、微調的網絡架構
- 使用神經網絡技術解決現代計算機視覺和自然語言處理問題
- 使用GPU訓練和評估模型,並學習如何部署它們
- 使用GPU探索最先進的模型,並利用現代優化技術
- 提高推理運行時間並在生產環境中部署模型

本書適合數據科學家、機器學習工程師和開發人員,他們希望使用Apache MXNet構建快速、可擴展的深度學習解決方案。讀者應該對Python編程有良好的理解,並具備Python 3.6+的工作環境。對於深度學習的數學理論有良好的理解將是有益的。