Codeless Deep Learning with KNIME: Build, train, and deploy various deep neural network architectures using KNIME Analytics Platform
暫譯: 無需編碼的深度學習與 KNIME:使用 KNIME 分析平台構建、訓練和部署各種深度神經網絡架構

Melcher, Kathrin, Silipo, Rosaria

  • 出版商: Packt Publishing
  • 出版日期: 2020-11-27
  • 售價: $2,210
  • 貴賓價: 9.5$2,100
  • 語言: 英文
  • 頁數: 408
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1800566611
  • ISBN-13: 9781800566613
  • 相關分類: DeepLearning
  • 海外代購書籍(需單獨結帳)

買這商品的人也買了...

相關主題

商品描述

Discover how to integrate KNIME Analytics Platform with deep learning libraries to implement artificial intelligence solutions

 

Key Features

  • Become well-versed with KNIME Analytics Platform to perform codeless deep learning
  • Design and build deep learning workflows quickly and more easily using the KNIME GUI
  • Discover different deployment options without using a single line of code with KNIME Analytics Platform

 

Book Description

KNIME Analytics Platform is an open source software used to create and design data science workflows. This book is a comprehensive guide to the KNIME GUI and KNIME deep learning integration, helping you build neural network models without writing any code. It'll guide you in building simple and complex neural networks through practical and creative solutions for solving real-world data problems.

 

Starting with an introduction to KNIME Analytics Platform, you'll get an overview of simple feed-forward networks for solving simple classification problems on relatively small datasets. You'll then move on to build, train, test, and deploy more complex networks, such as autoencoders, recurrent neural networks (RNNs), long short-term memory (LSTM), and convolutional neural networks (CNNs). In each chapter, depending on the network and use case, you'll learn how to prepare data, encode incoming data, and apply best practices.

 

By the end of this book, you'll have learned how to design a variety of different neural architectures and will be able to train, test, and deploy the final network.

 

What You Will Learn

  • Use various common nodes to transform your data into the right structure suitable for training a neural network
  • Understand neural network techniques such as loss functions, backpropagation, and hyperparameters
  • Prepare and encode data appropriately to feed it into the network
  • Build and train a classic feedforward network
  • Develop and optimize an autoencoder network for outlier detection
  • Implement deep learning networks such as CNNs, RNNs, and LSTM with the help of practical examples
  • Deploy a trained deep learning network on real-world data

 

Who this book is for

This book is for data analysts, data scientists, and deep learning developers who are not well-versed in Python but want to learn how to use KNIME GUI to build, train, test, and deploy neural networks with different architectures. The practical implementations shown in the book do not require coding or any knowledge of dedicated scripts, so you can easily implement your knowledge into practical applications. No prior experience of using KNIME is required to get started with this book.

商品描述(中文翻譯)

探索如何將 KNIME Analytics Platform 與深度學習庫整合,以實現人工智慧解決方案

主要特點


  • 熟悉 KNIME Analytics Platform,以無需編碼的方式進行深度學習

  • 使用 KNIME GUI 快速且輕鬆地設計和構建深度學習工作流程

  • 探索不同的部署選項,無需編寫任何代碼即可使用 KNIME Analytics Platform

書籍描述

KNIME Analytics Platform 是一款開源軟體,用於創建和設計數據科學工作流程。本書是 KNIME GUI 和 KNIME 深度學習整合的全面指南,幫助您在不編寫任何代碼的情況下構建神經網絡模型。它將指導您通過實用和創造性的解決方案來構建簡單和複雜的神經網絡,以解決現實世界中的數據問題。

本書從 KNIME Analytics Platform 的介紹開始,您將獲得簡單前饋網絡的概述,以解決相對較小數據集上的簡單分類問題。接著,您將學習構建、訓練、測試和部署更複雜的網絡,例如自編碼器、遞歸神經網絡(RNN)、長短期記憶(LSTM)和卷積神經網絡(CNN)。在每一章中,根據網絡和使用案例,您將學習如何準備數據、編碼輸入數據並應用最佳實踐。

到本書結束時,您將學會設計各種不同的神經架構,並能夠訓練、測試和部署最終的網絡。

您將學到什麼


  • 使用各種常見節點將數據轉換為適合訓練神經網絡的正確結構

  • 理解神經網絡技術,如損失函數、反向傳播和超參數

  • 適當準備和編碼數據,以便將其輸入網絡

  • 構建和訓練經典的前饋網絡

  • 開發和優化自編碼器網絡以進行異常檢測

  • 在實用範例的幫助下實現深度學習網絡,如 CNN、RNN 和 LSTM

  • 在現實世界數據上部署訓練好的深度學習網絡

本書適合誰

本書適合數據分析師、數據科學家和深度學習開發者,他們對 Python 不太熟悉,但希望學習如何使用 KNIME GUI 構建、訓練、測試和部署不同架構的神經網絡。本書中展示的實用實現不需要編碼或任何專用腳本的知識,因此您可以輕鬆地將所學知識應用於實際應用中。開始閱讀本書不需要先前使用 KNIME 的經驗。