Getting Started with Streamlit for Data Science: Create and deploy Streamlit web applications from scratch in Python (Paperback)
Richards, Tyler
- 出版商: Packt Publishing
- 出版日期: 2021-08-20
- 售價: $4,600
- 貴賓價: 9.5 折 $4,370
- 語言: 英文
- 頁數: 282
- 裝訂: Quality Paper - also called trade paper
- ISBN: 180056550X
- ISBN-13: 9781800565500
-
相關分類:
Python、程式語言、Scratch、Data Science
-
其他版本:
Streamlit for Data Science : Create interactive data apps in Python, 2/e (Paperback)
買這商品的人也買了...
-
$1,078Machine Learning (IE-Paperback)
-
$825Analyzing Baseball Data with R (Paperback)
-
$680$530 -
$580$452 -
$403React Native 精解與實戰
-
$301Node.js 10實戰
-
$403了不起的 JavaScript 工程師:從前端到全端高級進階
-
$550$429 -
$454深度學習之 PyTorch 物體檢測實戰
-
$690$587 -
$556程序員的AI書:從代碼開始
-
$248React Native 移動開發實戰, 2/e
-
$594$564 -
$780$616 -
$607Flask Web 開發入門、進階與實戰
-
$880$695 -
$580$458 -
$450$225 -
$450$225 -
$650$507 -
$500$250 -
$720$568 -
$600$570 -
$556大規模語言模型:從理論到實踐
-
$709基於大模型的 RAG 應用開發與優化 — 構建企業級 LLM 應用
相關主題
商品描述
Create, deploy, and test your Python applications, analyses, and models with ease using Streamlit
Key Features:
- Learn how to showcase machine learning models in a Streamlit application effectively and efficiently
- Become an expert Streamlit creator by getting hands-on with complex application creation
- Discover how Streamlit enables you to create and deploy apps effortlessly
Book Description:
Streamlit shortens the development time for the creation of data-focused web applications, allowing data scientists to create web app prototypes using Python in hours instead of days. Getting Started with Streamlit for Data Science takes a hands-on approach to helping you learn the tips and tricks that will have you up and running with Streamlit in no time.
You'll start with the fundamentals of Streamlit by creating a basic app and gradually build on the foundation by producing high-quality graphics with data visualization and testing machine learning models. As you advance through the chapters, you'll walk through practical examples of both personal data projects and work-related data-focused web applications, and get to grips with more challenging topics such as using Streamlit Components, beautifying your apps, and quick deployment of your new apps.
By the end of this book, you'll be able to create dynamic web apps in Streamlit quickly and effortlessly using the power of Python.
What You Will Learn:
- Set up your first development environment and create a basic Streamlit app from scratch
- Explore methods for uploading, downloading, and manipulating data in Streamlit apps
- Create dynamic visualizations in Streamlit using built-in and imported Python libraries
- Discover strategies for creating and deploying machine learning models in Streamlit
- Use Streamlit sharing for one-click deployment
- Beautify Streamlit apps using themes, Streamlit Components, and Streamlit sidebar
- Implement best practices for prototyping your data science work with Streamlit
Who this book is for:
This book is for data scientists and machine learning enthusiasts who want to create web apps using Streamlit. Whether you're a junior data scientist looking to deploy your first machine learning project in Python to improve your resume or a senior data scientist who wants to use Streamlit to make convincing and dynamic data analyses, this book will help you get there! Prior knowledge of Python programming will assist with understanding the concepts covered.