Azure Data Factory Cookbook: Build and manage ETL and ELT pipelines with Microsoft Azure's serverless data integration service (Paperback)
暫譯: Azure Data Factory 食譜:使用 Microsoft Azure 的無伺服器數據整合服務構建和管理 ETL 和 ELT 管道 (平裝本)

Anoshin, Dmitry, Foshin, Dmitry, Storchak, Roman

  • 出版商: Packt Publishing
  • 出版日期: 2020-12-24
  • 售價: $2,010
  • 貴賓價: 9.5$1,910
  • 語言: 英文
  • 頁數: 382
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1800565291
  • ISBN-13: 9781800565296
  • 相關分類: Microsoft AzureServerless
  • 海外代購書籍(需單獨結帳)

買這商品的人也買了...

商品描述

Solve real-world data problems and create data-driven workflows for easy data movement and processing at scale with Azure Data Factory

 

Key Features

  • Learn how to load and transform data from various sources, both on-premises and on cloud
  • Use Azure Data Factory's visual environment to build and manage hybrid ETL pipelines
  • Discover how to prepare, transform, process, and enrich data to generate key insights

 

Book Description

Azure Data Factory (ADF) is a modern data integration tool available on Microsoft Azure. This Azure Data Factory Cookbook helps you get up and running by showing you how to create and execute your first job in ADF. You'll learn how to branch and chain activities, create custom activities, and schedule pipelines. This book will help you to discover the benefits of cloud data warehousing, Azure Synapse Analytics, and Azure Data Lake Gen2 Storage, which are frequently used for big data analytics. With practical recipes, you'll learn how to actively engage with analytical tools from Azure Data Services and leverage your on-premise infrastructure with cloud-native tools to get relevant business insights. As you advance, you'll be able to integrate the most commonly used Azure Services into ADF and understand how Azure services can be useful in designing ETL pipelines. The book will take you through the common errors that you may encounter while working with ADF and show you how to use the Azure portal to monitor pipelines. You'll also understand error messages and resolve problems in connectors and data flows with the debugging capabilities of ADF.

By the end of this book, you'll be able to use ADF as the main ETL and orchestration tool for your data warehouse or data platform projects.

 

What You Will Learn

  • Create an orchestration and transformation job in ADF
  • Develop, execute, and monitor data flows using Azure Synapse
  • Create big data pipelines using Azure Data Lake and ADF
  • Build a machine learning app with Apache Spark and ADF
  • Migrate on-premises SSIS jobs to ADF
  • Integrate ADF with commonly used Azure services such as Azure ML, Azure Logic Apps, and Azure Functions
  • Run big data compute jobs within HDInsight and Azure Databricks
  • Copy data from AWS S3 and Google Cloud Storage to Azure Storage using ADF's built-in connectors

 

Who this book is for

This book is for ETL developers, data warehouse and ETL architects, software professionals, and anyone who wants to learn about the common and not-so-common challenges faced while developing traditional and hybrid ETL solutions using Microsoft's Azure Data Factory. You'll also find this book useful if you are looking for recipes to improve or enhance your existing ETL pipelines. Basic knowledge of data warehousing is expected.

商品描述(中文翻譯)

解決現實世界的數據問題,並使用 Azure Data Factory 創建數據驅動的工作流程,以便輕鬆地進行大規模數據移動和處理

主要特點


  • 學習如何從各種來源(包括本地和雲端)加載和轉換數據

  • 使用 Azure Data Factory 的可視化環境來構建和管理混合 ETL 管道

  • 發現如何準備、轉換、處理和豐富數據,以生成關鍵見解

書籍描述

Azure Data Factory (ADF) 是一個現代數據整合工具,提供於 Microsoft Azure。這本 Azure Data Factory 食譜幫助您快速上手,展示如何在 ADF 中創建和執行您的第一個作業。您將學習如何分支和鏈接活動、創建自定義活動以及排程管道。本書將幫助您發現雲數據倉儲、Azure Synapse Analytics 和 Azure Data Lake Gen2 Storage 的好處,這些工具經常用於大數據分析。通過實用的食譜,您將學會如何積極使用 Azure Data Services 的分析工具,並利用您的本地基礎設施與雲原生工具相結合,以獲得相關的商業見解。隨著您的進步,您將能夠將最常用的 Azure 服務整合到 ADF 中,並理解 Azure 服務在設計 ETL 管道中的實用性。本書將帶您了解在使用 ADF 時可能遇到的常見錯誤,並展示如何使用 Azure 入口網站來監控管道。您還將理解錯誤消息,並利用 ADF 的調試功能解決連接器和數據流中的問題。

在本書結束時,您將能夠將 ADF 作為數據倉庫或數據平台項目的主要 ETL 和編排工具。

您將學到什麼


  • 在 ADF 中創建編排和轉換作業

  • 使用 Azure Synapse 開發、執行和監控數據流

  • 使用 Azure Data Lake 和 ADF 創建大數據管道

  • 使用 Apache Spark 和 ADF 構建機器學習應用

  • 將本地 SSIS 作業遷移到 ADF

  • 將 ADF 與常用的 Azure 服務(如 Azure ML、Azure Logic Apps 和 Azure Functions)整合

  • 在 HDInsight 和 Azure Databricks 中運行大數據計算作業

  • 使用 ADF 的內建連接器將數據從 AWS S3 和 Google Cloud Storage 複製到 Azure Storage

本書適合誰

本書適合 ETL 開發人員、數據倉庫和 ETL 架構師、軟體專業人員,以及任何希望了解在使用 Microsoft 的 Azure Data Factory 開發傳統和混合 ETL 解決方案時所面臨的常見和不常見挑戰的人。如果您正在尋找改善或增強現有 ETL 管道的食譜,這本書也將對您有幫助。預期具備基本的數據倉儲知識。