Hands-On Data Analysis with Pandas : A Python data science handbook for data collection, wrangling, analysis, and visualization, 2/e (Paperback)
暫譯: 實戰數據分析與 Pandas:Python 數據科學手冊,涵蓋數據收集、整理、分析與視覺化,第二版(平裝本)

Molin, Stefanie

  • 出版商: Packt Publishing
  • 出版日期: 2021-04-29
  • 定價: $1,570
  • 售價: 9.5$1,492
  • 語言: 英文
  • 頁數: 788
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1800563450
  • ISBN-13: 9781800563452
  • 相關分類: Python程式語言Data Science
  • 相關翻譯: Pandas數據分析 (簡中版)
  • 立即出貨 (庫存=1)

買這商品的人也買了...

相關主題

商品描述

Get to grips with pandas by working with real datasets and master data discovery, data manipulation, data preparation, and handling data for analytical tasks

Key Features
  • Perform efficient data analysis and manipulation tasks using pandas 1.x
  • Apply pandas to different real-world domains with the help of step-by-step examples
  • Make the most of pandas as an effective data exploration tool
Book Description

Extracting valuable business insights is no longer a 'nice-to-have', but an essential skill for anyone who handles data in their enterprise. Hands-On Data Analysis with Pandas is here to help beginners and those who are migrating their skills into data science get up to speed in no time.

This book will show you how to analyze your data, get started with machine learning, and work effectively with the Python libraries often used for data science, such as pandas, NumPy, matplotlib, seaborn, and scikit-learn.

Using real-world datasets, you will learn how to use the pandas library to perform data wrangling to reshape, clean, and aggregate your data. Then, you will learn how to conduct exploratory data analysis by calculating summary statistics and visualizing the data to find patterns. In the concluding chapters, you will explore some applications of anomaly detection, regression, clustering, and classification using scikit-learn to make predictions based on past data.

This updated edition will equip you with the skills you need to use pandas 1.x to efficiently perform various data manipulation tasks, reliably reproduce analyses, and visualize your data for effective decision making - valuable knowledge that can be applied across multiple domains.

What you will learn
  • Understand how data analysts and scientists gather and analyze data
  • Perform data analysis and data wrangling using Python
  • Combine, group, and aggregate data from multiple sources
  • Create data visualizations with pandas, matplotlib, and seaborn
  • Apply machine learning algorithms to identify patterns and make predictions
  • Use Python data science libraries to analyze real-world datasets
  • Solve common data representation and analysis problems using pandas
  • Build Python scripts, modules, and packages for reusable analysis code
Who this book is for

This book is for data science beginners, data analysts, and Python developers who want to explore each stage of data analysis and scientific computing using a wide range of datasets. Data scientists looking to implement pandas in their machine learning workflow will also find plenty of valuable know-how as they progress.

You'll find it easier to follow along with this book if you have a working knowledge of the Python programming language, but a Python crash-course tutorial is provided in the code bundle for anyone who needs a refresher.

Table of Contents
  1. Introduction to Data Analysis
  2. Working with Pandas DataFrames
  3. Data Wrangling with Pandas
  4. Aggregating Pandas DataFrames
  5. Visualizing Data with Pandas and Matplotlib
  6. Plotting with Seaborn and Customization Techniques
  7. Financial Analysis - Bitcoin and the Stock Market
  8. Rule-Based Anomaly Detection
  9. Getting Started with Machine Learning in Python
  10. Making Better Predictions - Optimizing Models
  11. Machine Learning Anomaly Detection
  12. The Road Ahead

商品描述(中文翻譯)

透過實際數據集掌握 pandas,精通數據探索、數據操作、數據準備及分析任務中的數據處理主要特點


  • 使用 pandas 1.x 執行高效的數據分析和操作任務

  • 透過逐步範例將 pandas 應用於不同的實際領域

  • 充分利用 pandas 作為有效的數據探索工具

書籍描述

提取有價值的商業洞察不再是「可有可無」,而是任何處理企業數據的人必備的技能。《Hands-On Data Analysis with Pandas》旨在幫助初學者及那些將技能轉移至數據科學的人迅速上手。

本書將教你如何分析數據、開始機器學習,並有效地使用常用於數據科學的 Python 庫,如 pandas、NumPy、matplotlib、seaborn 和 scikit-learn。

透過使用實際的數據集,你將學會如何使用 pandas 庫進行數據整理,以重塑、清理和聚合數據。接著,你將學會如何進行探索性數據分析,計算摘要統計並可視化數據以尋找模式。在最後幾章中,你將探索使用 scikit-learn 進行異常檢測、回歸、聚類和分類的一些應用,以根據過去的數據進行預測。

這個更新版將使你具備使用 pandas 1.x 高效執行各種數據操作任務的技能,可靠地重現分析結果,並可視化數據以進行有效的決策 - 這些知識在多個領域中都能應用。

你將學到什麼

  • 了解數據分析師和科學家如何收集和分析數據

  • 使用 Python 執行數據分析和數據整理

  • 從多個來源合併、分組和聚合數據

  • 使用 pandas、matplotlib 和 seaborn 創建數據可視化

  • 應用機器學習算法識別模式並進行預測

  • 使用 Python 數據科學庫分析實際數據集

  • 使用 pandas 解決常見的數據表示和分析問題

  • 構建可重用分析代碼的 Python 腳本、模組和包

本書適合誰

本書適合數據科學初學者、數據分析師和希望使用各種數據集探索數據分析和科學計算每個階段的 Python 開發者。希望在機器學習工作流程中實施 pandas 的數據科學家也會在進步過程中獲得大量有價值的知識。

如果你對 Python 編程語言有基本的了解,將更容易跟隨本書的內容,但對於需要複習的人,代碼包中提供了 Python 快速入門教程。

目錄

  1. 數據分析簡介

  2. 使用 Pandas DataFrames

  3. 使用 Pandas 進行數據整理

  4. 聚合 Pandas DataFrames

  5. 使用 Pandas 和 Matplotlib 可視化數據

  6. 使用 Seaborn 繪圖及自定義技術

  7. 金融分析 - 比特幣與股市

  8. 基於規則的異常檢測

  9. 在 Python 中開始機器學習

  10. 做出更好的預測 - 優化模型

  11. 機器學習異常檢測

  12. 未來的道路