Hands-On Computer Vision with Detectron2: Develop object detection and segmentation models with a code and visualization approach
Pham, Van Vung
- 出版商: Packt Publishing
- 出版日期: 2023-04-14
- 售價: $1,690
- 貴賓價: 9.5 折 $1,606
- 語言: 英文
- 頁數: 318
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1800561628
- ISBN-13: 9781800561625
-
相關分類:
Computer Vision
立即出貨 (庫存=1)
買這商品的人也買了...
-
$505Processing 編程學習指南(原書第2版)
-
$450$338 -
$1,440AR and VR Using the Webxr API: Learn to Create Immersive Content with Webgl, Three.Js, and A-Frame (Paperback)
-
$2,030$1,929 -
$407Java 從入門到精通, 6/e
-
$4,200$3,990 -
$500$395 -
$2,682Practical Machine Learning for Computer Vision: End-To-End Machine Learning for Images (Paperback)
-
$2,070AI and Machine Learning for On-Device Development: A Programmer's Guide
-
$1,805$1,710 -
$2,160$2,052 -
$539$512 -
$780$616 -
$1,200$792 -
$1,950$1,853 -
$780$616 -
$2,660$2,520 -
$630$498 -
$2,100$1,995 -
$2,150$2,043 -
$560$442 -
$720$562 -
$2,508$2,376 -
$520$343 -
$780$616
相關主題
商品描述
Explore Detectron2 using cutting-edge models and learn all about implementing future computer vision applications in custom domains
Purchase of the print or Kindle book includes a free PDF eBook
Key Features:
- Learn how to tackle common computer vision tasks in modern businesses with Detectron2
- Leverage Detectron2 performance tuning techniques to control the model's finest details
- Deploy Detectron2 models into production and develop Detectron2 models for mobile devices
Book Description:
Computer vision is a crucial component of many modern businesses, including automobiles, robotics, and manufacturing, and its market is growing rapidly. This book helps you explore Detectron2, Facebook's next-gen library providing cutting-edge detection and segmentation algorithms. It's used in research and practical projects at Facebook to support computer vision tasks, and its models can be exported to TorchScript or ONNX for deployment.
The book provides you with step-by-step guidance on using existing models in Detectron2 for computer vision tasks (object detection, instance segmentation, key-point detection, semantic detection, and panoptic segmentation). You'll get to grips with the theories and visualizations of Detectron2's architecture and learn how each module in Detectron2 works. As you advance, you'll build your practical skills by working on two real-life projects (preparing data, training models, fine-tuning models, and deployments) for object detection and instance segmentation tasks using Detectron2. Finally, you'll deploy Detectron2 models into production and develop Detectron2 applications for mobile devices.
By the end of this deep learning book, you'll have gained sound theoretical knowledge and useful hands-on skills to help you solve advanced computer vision tasks using Detectron2.
What You Will Learn:
- Build computer vision applications using existing models in Detectron2
- Grasp the concepts underlying Detectron2's architecture and components
- Develop real-life projects for object detection and object segmentation using Detectron2
- Improve model accuracy using Detectron2's performance-tuning techniques
- Deploy Detectron2 models into server environments with ease
- Develop and deploy Detectron2 models into browser and mobile environments
Who this book is for:
If you are a deep learning application developer, researcher, or software developer with some prior knowledge about deep learning, this book is for you to get started and develop deep learning models for computer vision applications. Even if you are an expert in computer vision and curious about the features of Detectron2, or you would like to learn some cutting-edge deep learning design patterns, you will find this book helpful. Some HTML, Android, and C++ programming skills are advantageous if you want to deploy computer vision applications using these platforms.
商品描述(中文翻譯)
探索使用尖端模型的Detectron2,並學習在自定義領域中實現未來的計算機視覺應用的所有知識。
購買印刷版或Kindle書籍將包含免費的PDF電子書。
主要特點:
- 學習如何使用Detectron2解決現代企業中的常見計算機視覺任務
- 利用Detectron2的性能調整技術來控制模型的最細節
- 將Detectron2模型部署到生產環境中,並為移動設備開發Detectron2模型
書籍描述:
計算機視覺是許多現代企業(包括汽車、機器人和製造業)的重要組成部分,其市場正在快速增長。本書幫助您探索Detectron2,這是Facebook的下一代庫,提供尖端的檢測和分割算法。它在Facebook的研究和實際項目中被用於支持計算機視覺任務,並且其模型可以導出到TorchScript或ONNX進行部署。
本書提供了使用Detectron2中現有模型進行計算機視覺任務(對象檢測、實例分割、關鍵點檢測、語義檢測和全景分割)的逐步指導。您將瞭解Detectron2架構的理論和可視化,並了解Detectron2中每個模塊的工作原理。隨著進一步的學習,您將通過使用Detectron2進行對象檢測和實例分割任務的兩個實際項目(準備數據、訓練模型、微調模型和部署)來建立實踐技能。最後,您將部署Detectron2模型到生產環境中,並為移動設備開發Detectron2應用程序。
通過閱讀本深度學習書籍,您將獲得扎實的理論知識和實用的實踐技能,以幫助您使用Detectron2解決高級計算機視覺任務。
學到的內容:
- 使用Detectron2中的現有模型構建計算機視覺應用程序
- 掌握Detectron2架構和組件的概念
- 使用Detectron2開發對象檢測和對象分割的實際項目
- 使用Detectron2的性能調整技術提高模型準確性
- 輕鬆將Detectron2模型部署到服務器環境中
- 在瀏覽器和移動設備中開發和部署Detectron2模型
本書適合深度學習應用程序開發人員、研究人員或軟件開發人員,他們對深度學習有一些基礎知識,並希望開始並為計算機視覺應用程序開發深度學習模型。即使您是計算機視覺專家,對Detectron2的功能感到好奇,或者您想學習一些尖端的深度學習設計模式,您也會發現本書很有幫助。如果您想使用這些平台部署計算機視覺應用程序,具有一些HTML、Android和C++編程技能將是有利的。