Hands-On Neural Networks with TensorFlow 2.0
Paolo Galeone
- 出版商: Packt Publishing
- 出版日期: 2019-09-13
- 售價: $1,790
- 貴賓價: 9.5 折 $1,701
- 語言: 英文
- 頁數: 358
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1789615550
- ISBN-13: 9781789615555
-
相關分類:
DeepLearning、TensorFlow
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
$2,500$2,375 -
$403深度學習 : 21天實戰 Caffe
-
$500$390 -
$1,395$1,325 -
$602計算統計,2/e (Computational Statistics, 2/e)
-
$690$545 -
$294$279 -
$650$507 -
$882Deep Learning with TensorFlow 2 and Keras, 2/e (Paperback)
-
$480$360 -
$550$429 -
$454聯邦學習
-
$500$390 -
$662機器視覺之 TensorFlow 2 入門原理與應用實戰
-
$594$564 -
$650$585 -
$520$411 -
$720$569 -
$600$468 -
$880$695 -
$580$435 -
$780$616 -
$680$537 -
$570多模態大模型:技術原理與實戰
-
$403Llama 大模型實踐指南
相關主題
商品描述
Key Features
- Understand the basics of machine learning and discover the power of neural networks and deep learning
- Explore the structure of the TensorFlow framework and understand how to transition to TF 2.0
- Solve any deep learning problem by developing neural network-based solutions using TF 2.0
Book Description
TensorFlow, the most popular and widely used machine learning framework, has made it possible for almost anyone to develop machine learning solutions with ease. With TensorFlow (TF) 2.0, you'll explore a revamped framework structure, offering a wide variety of new features aimed at improving productivity and ease of use for developers.
This book covers machine learning with a focus on developing neural network-based solutions. You'll start by getting familiar with the concepts and techniques required to build solutions to deep learning problems. As you advance, you'll learn how to create classifiers, build object detection and semantic segmentation networks, train generative models, and speed up the development process using TF 2.0 tools such as TensorFlow Datasets and TensorFlow Hub.
By the end of this TensorFlow book, you'll be ready to solve any machine learning problem by developing solutions using TF 2.0 and putting them into production.
What you will learn
- Grasp machine learning and neural network techniques to solve challenging tasks
- Apply the new features of TF 2.0 to speed up development
- Use TensorFlow Datasets (tfds) and the tf.data API to build high-efficiency data input pipelines
- Perform transfer learning and fine-tuning with TensorFlow Hub
- Define and train networks to solve object detection and semantic segmentation problems
- Train Generative Adversarial Networks (GANs) to generate images and data distributions
- Use the SavedModel file format to put a model, or a generic computational graph, into production
Who this book is for
If you're a developer who wants to get started with machine learning and TensorFlow, or a data scientist interested in developing neural network solutions in TF 2.0, this book is for you. Experienced machine learning engineers who want to master the new features of the TensorFlow framework will also find this book useful.
Basic knowledge of calculus and a strong understanding of Python programming will help you grasp the topics covered in this book.
商品描述(中文翻譯)
主要特點
- 了解機器學習的基礎,並發現神經網絡和深度學習的威力
- 探索TensorFlow框架的結構,並了解如何過渡到TF 2.0
- 使用TF 2.0開發基於神經網絡的解決方案,解決任何深度學習問題
書籍描述
TensorFlow是最受歡迎和廣泛使用的機器學習框架,幾乎任何人都可以輕鬆開發機器學習解決方案。使用TensorFlow(TF)2.0,您將探索一個經過改進的框架結構,提供各種新功能,旨在提高開發人員的生產力和使用便利性。
本書涵蓋了以神經網絡為基礎的機器學習,重點介紹了構建深度學習問題解決方案所需的概念和技術。隨著您的進一步學習,您將學習如何創建分類器,構建物體檢測和語義分割網絡,訓練生成模型,並使用TF 2.0工具(如TensorFlow Datasets和TensorFlow Hub)加快開發過程。
通過閱讀本書,您將能夠使用TF 2.0解決任何機器學習問題並將其投入生產。
您將學到什麼
- 掌握機器學習和神經網絡技術,解決具有挑戰性的任務
- 應用TF 2.0的新功能加快開發速度
- 使用TensorFlow Datasets(tfds)和tf.data API構建高效的數據輸入管道
- 使用TensorFlow Hub進行轉移學習和微調
- 定義和訓練網絡以解決物體檢測和語義分割問題
- 訓練生成對抗網絡(GAN)生成圖像和數據分佈
- 使用SavedModel文件格式將模型或通用計算圖放入生產環境
適合閱讀對象
如果您是一位希望開始學習機器學習和TensorFlow的開發人員,或者是一位對在TF 2.0中開發神經網絡解決方案感興趣的數據科學家,本書適合您。有經驗的機器學習工程師也會發現本書對於掌握TensorFlow框架的新功能非常有用。
對微積分有基本知識和對Python編程有深入理解將有助於您理解本書中涵蓋的主題。
作者簡介
Paolo Galeone is a computer engineer with strong practical experience. After getting his MSc degree, he joined the Computer Vision Laboratory at the University of Bologna, Italy, as a research fellow, where he improved his computer vision and machine learning knowledge working on a broad range of research topics. Currently, he leads the Computer Vision and Machine Learning laboratory at ZURU Tech, Italy.
In 2019, Google recognized his expertise by awarding him the title of Google Developer Expert (GDE) in Machine Learning. As a GDE, he shares his passion for machine learning and the TensorFlow framework by blogging, speaking at conferences, contributing to open-source projects, and answering questions on Stack Overflow.
作者簡介(中文翻譯)
Paolo Galeone是一位具有豐富實踐經驗的電腦工程師。在獲得碩士學位後,他加入了意大利博洛尼亞大學的計算機視覺實驗室,擔任研究助理,並在各種研究主題上提升了他的計算機視覺和機器學習知識。目前,他在意大利的ZURU Tech領導著計算機視覺和機器學習實驗室。
2019年,Google通過授予他機器學習領域的Google開發者專家(GDE)稱號,認可了他的專業知識。作為一名GDE,他通過博客、在會議上演講、參與開源項目和在Stack Overflow上回答問題來分享他對機器學習和TensorFlow框架的熱情。
目錄大綱
- What is Machine Learning?
- Neural Networks and Deep Learning
- TensorFlow Graph Architecture
- TensorFlow 2.0 Architecture
- Efficient Data Input Pipelines and Estimator API
- Image Classification using TensorFlow Hub
- Introduction to Object Detection
- Semantic Segmentation and Custom Dataset Builder
- Generative Adversarial Networks
- Bringing a Model to Production
目錄大綱(中文翻譯)
機器學習是什麼?
神經網絡和深度學習
TensorFlow圖形架構
TensorFlow 2.0架構
高效的數據輸入管道和Estimator API
使用TensorFlow Hub進行圖像分類
物體檢測入門
語義分割和自定義數據集生成器
生成對抗網絡
將模型投入生產