Python Image Processing Cookbook: Over 60 recipes to help you perform complex image processing and computer vision tasks with ease (Paperback)
暫譯: Python 圖像處理食譜:超過 60 種食譜幫助您輕鬆執行複雜的圖像處理和計算機視覺任務 (平裝本)
Sandipan Dey
- 出版商: Packt Publishing
- 出版日期: 2020-04-17
- 售價: $2,000
- 貴賓價: 9.5 折 $1,900
- 語言: 英文
- 頁數: 438
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1789537142
- ISBN-13: 9781789537147
-
相關分類:
Python、程式語言、Computer Vision
-
相關翻譯:
Python 圖像處理經典實例 (簡中版)
買這商品的人也買了...
-
$1,805Test-Driven Development: By Example (Paperback)
-
$465Java After Hours: 10 Projects You'll Never Do at Work (Paperback)
-
$1,919Real World Instrumentation with Python: Automated Data Acquisition and Control Systems (Paperback)
-
$580$452 -
$780$663 -
$1,200$948 -
$580$452 -
$680$537 -
$1,280$1,088 -
$1,390$1,321 -
$450$356 -
$551WebGL 3D 開發實戰詳解, 2/e
-
$1,656Introduction to Machine Learning, 4/e (Hardcover)
-
$980$774 -
$1,200$948 -
$2,790$2,651 -
$880$695 -
$680$537 -
$480$379 -
$580$458 -
$680$537 -
$1,862Robust Python: Write Clean and Maintainable Code (Paperback)
-
$2,300$2,185 -
$611Python 圖像處理經典實例
-
$520$411
相關主題
商品描述
Explore Keras, scikit-image, open source computer vision (OpenCV), Matplotlib, and a wide range of other Python tools and frameworks to solve real-world image processing problems
Key Features
- Discover solutions to complex image processing tasks using Python tools such as scikit-image and Keras
- Learn popular concepts such as machine learning, deep learning, and neural networks for image processing
- Explore common and not-so-common challenges faced in image processing
Book Description
With the advancements in wireless devices and mobile technology, there's increasing demand for people with digital image processing skills in order to extract useful information from the ever-growing volume of images. This book provides comprehensive coverage of the relevant tools and algorithms, and guides you through analysis and visualization for image processing.
With the help of over 60 cutting-edge recipes, you'll address common challenges in image processing and learn how to perform complex tasks such as object detection, image segmentation, and image reconstruction using large hybrid datasets. Dedicated sections will also take you through implementing various image enhancement and image restoration techniques, such as cartooning, gradient blending, and sparse dictionary learning. As you advance, you'll get to grips with face morphing and image segmentation techniques. With an emphasis on practical solutions, this book will help you apply deep learning techniques such as transfer learning and fine-tuning to solve real-world problems.
By the end of this book, you'll be proficient in utilizing the capabilities of the Python ecosystem to implement various image processing techniques effectively.
What you will learn
- Implement supervised and unsupervised machine learning algorithms for image processing
- Use deep neural network models for advanced image processing tasks
- Perform image classification, object detection, and face recognition
- Apply image segmentation and registration techniques on medical images to assist doctors
- Use classical image processing and deep learning methods for image restoration
- Implement text detection in images using Tesseract, the optical character recognition (OCR) engine
- Understand image enhancement techniques such as gradient blending
Who this book is for
This book is for image processing engineers, computer vision engineers, software developers, machine learning engineers, or anyone who wants to become well-versed with image processing techniques and methods using a recipe-based approach. Although no image processing knowledge is expected, prior Python coding experience is necessary to understand key concepts covered in the book.
商品描述(中文翻譯)
**探索 Keras、scikit-image、開源電腦視覺 (OpenCV)、Matplotlib 以及其他各種 Python 工具和框架,以解決現實世界的影像處理問題**
#### 主要特點
- 使用 Python 工具如 scikit-image 和 Keras 發現複雜影像處理任務的解決方案
- 學習影像處理的熱門概念,如機器學習、深度學習和神經網絡
- 探索影像處理中常見及不常見的挑戰
#### 書籍描述
隨著無線設備和移動技術的進步,對具備數位影像處理技能的人才需求日益增加,以從不斷增長的影像量中提取有用資訊。本書全面涵蓋相關工具和演算法,並指導您進行影像處理的分析和視覺化。
透過超過 60 個前沿的實作範例,您將解決影像處理中的常見挑戰,並學習如何使用大型混合數據集執行複雜任務,如物體檢測、影像分割和影像重建。專門的章節還將帶您實現各種影像增強和影像修復技術,如卡通化、漸層混合和稀疏字典學習。隨著進步,您將掌握面部變形和影像分割技術。本書強調實用解決方案,將幫助您應用深度學習技術,如遷移學習和微調,以解決現實世界的問題。
在本書結束時,您將熟練運用 Python 生態系統的能力,有效實現各種影像處理技術。
#### 您將學到什麼
- 實現監督式和非監督式機器學習演算法以進行影像處理
- 使用深度神經網絡模型進行高級影像處理任務
- 執行影像分類、物體檢測和面部識別
- 在醫療影像上應用影像分割和配準技術以協助醫生
- 使用經典影像處理和深度學習方法進行影像修復
- 使用 Tesseract 進行影像中的文字檢測,這是一個光學字符識別 (OCR) 引擎
- 理解影像增強技術,如漸層混合
#### 本書適合誰
本書適合影像處理工程師、電腦視覺工程師、軟體開發人員、機器學習工程師,或任何希望熟悉影像處理技術和方法的人士,採用基於實作的方式。雖然不要求具備影像處理知識,但需要具備先前的 Python 編碼經驗,以理解書中涵蓋的關鍵概念。
作者簡介
Sandipan Dey is a data scientist with a wide range of interests, covering topics such as machine learning, deep learning, image processing, and computer vision. He has worked in numerous data science fields, working with recommender systems, predictive models for the events industry, sensor localization models, sentiment analysis, and device prognostics. He earned his master's degree in computer science from the University of Maryland, Baltimore County, and has published in a few IEEE Data Mining conferences and journals. He has earned certifications from 100+ MOOCs on data science, machine learning, deep learning, image processing, and related courses. He is a regular blogger (sandipanweb) and is a machine learning education enthusiast.
作者簡介(中文翻譯)
Sandipan Dey 是一位資料科學家,擁有廣泛的興趣,涵蓋機器學習、深度學習、影像處理和計算機視覺等主題。他在多個資料科學領域工作過,包括推薦系統、事件產業的預測模型、感測器定位模型、情感分析和設備預測。他在馬里蘭大學巴爾的摩縣校區獲得了計算機科學碩士學位,並在幾個 IEEE 資料挖掘會議和期刊上發表過論文。他已從 100 多個 MOOC 課程中獲得資料科學、機器學習、深度學習、影像處理及相關課程的證書。他是一位定期部落客(sandipanweb),並且對機器學習教育充滿熱情。
目錄大綱
- Image Manipulation and Transformation
- Image Enhancement
- Image Restoration
- Binary Image Processing
- Image Registration
- Image Segmentation
- Image Classification
- Object Detection in Images
- Face Detection and Recognition
目錄大綱(中文翻譯)
- Image Manipulation and Transformation
- Image Enhancement
- Image Restoration
- Binary Image Processing
- Image Registration
- Image Segmentation
- Image Classification
- Object Detection in Images
- Face Detection and Recognition