Hands-On Generative Adversarial Networks with PyTorch 1.x
Hany, John (Author), Walters, Greg (Autho
- 出版商: Packt Publishing
- 出版日期: 2019-12-12
- 售價: $1,680
- 貴賓價: 9.5 折 $1,596
- 語言: 英文
- 頁數: 312
- ISBN: 1789530512
- ISBN-13: 9781789530513
-
相關分類:
DeepLearning
立即出貨 (庫存=1)
買這商品的人也買了...
-
$3,150$2,993 -
$1,640$1,558 -
$550$468 -
$590$460 -
$830$789 -
$620$527 -
$454跟著項目學 iOS 應用開發:基於 Swift 4
-
$454大規模 MIMO 傳輸理論與關鍵技術
-
$704Python 和 NLTK 自然語言處理 (Natural Language Processing: Python and NLTK)
-
$2,500CMOS: Circuit Design, Layout, and Simulation ,4/e (Hardcover)
-
$1,488Aws Certified Cloud Practitioner (Clf-C01) Cert Guide
-
$1,840$1,748 -
$505$475 -
$2,7685G NR : The Next Generation Wireless Access Technology, 2/e (Paperback)
-
$894$849 -
$580$458 -
$2,180$2,071 -
$1,200$948 -
$880$695 -
$880$695 -
$880$695 -
$880$748 -
$880$695 -
$1,280$1,011 -
$539$512
相關主題
商品描述
Learn |
|
---|---|
About |
With continuously evolving research and development, Generative Adversarial Networks (GANs) are the next big thing in the field of deep learning. This book highlights the key improvements in GANs over generative models and guides in making the best out of GANs with the help of hands-on examples. This book starts by taking you through the core concepts necessary to understand how each component of a GAN model works. You'll build your first GAN model to understand how generator and discriminator networks function. As you advance, you'll delve into a range of examples and datasets to build a variety of GAN networks using PyTorch functionalities and services, and become well-versed with architectures, training strategies, and evaluation methods for image generation, translation, and restoration. You'll even learn how to apply GAN models to solve problems in areas such as computer vision, multimedia, 3D models, and natural language processing (NLP). The book covers how to overcome the challenges faced while building generative models from scratch. Finally, you'll also discover how to train your GAN models to generate adversarial examples to attack other CNN and GAN models. By the end of this book, you will have learned how to build, train, and optimize next-generation GAN models and use them to solve a variety of real-world problems. |
Features |
|
商品描述(中文翻譯)
學習
- 實現PyTorch的最新功能,以確保有效的模型設計
- 了解GAN模型的工作機制
- 使用CycleGAN在不成對的圖像集合之間進行風格轉換
- 構建和訓練3D-GANs以生成3D物體的點雲
- 創建各種GAN模型,執行各種圖像合成操作
- 使用SEGAN壓制噪音,改善語音音頻的質量
關於
隨著不斷發展的研究和開發,生成對抗網絡(GANs)是深度學習領域的下一個重大突破。本書突出了GANs在生成模型上的關鍵改進,並通過實例指導如何充分利用GANs的優勢。
本書首先介紹了理解GAN模型各個組件工作原理所需的核心概念。您將構建第一個GAN模型,以了解生成器和鑑別器網絡的運作方式。隨著進一步的學習,您將深入研究一系列實例和數據集,使用PyTorch的功能和服務構建各種GAN網絡,並熟悉圖像生成、翻譯和恢復的架構、訓練策略和評估方法。您甚至將學習如何應用GAN模型解決計算機視覺、多媒體、3D模型和自然語言處理(NLP)等領域的問題。本書介紹了如何克服從頭開始構建生成模型時遇到的挑戰。最後,您還將發現如何訓練GAN模型生成對抗性示例,以攻擊其他CNN和GAN模型。
通過閱讀本書,您將學習如何構建、訓練和優化下一代GAN模型,並使用它們解決各種現實世界的問題。
特點
- 實現GAN架構以生成圖像、文本、音頻、3D模型等
- 了解GAN的工作原理,成為開源社區的積極貢獻者
- 學習如何根據文本描述生成逼真的圖像