Hands-On GPU-Accelerated Computer Vision with OpenCV and CUDA: Effective techniques for processing complex image data in real time using GPUs (Paperback)
暫譯: 實戰GPU加速電腦視覺:使用OpenCV和CUDA的有效技術,實時處理複雜影像數據
Bhaumik Vaidya
- 出版商: Packt Publishing
- 出版日期: 2018-09-27
- 售價: $2,080
- 貴賓價: 9.5 折 $1,976
- 語言: 英文
- 頁數: 380
- 裝訂: Paperback
- ISBN: 1789348293
- ISBN-13: 9781789348293
-
相關分類:
CUDA、影像辨識 Image-recognition、Computer Vision
-
相關翻譯:
基於 GPU 加速的計算機視覺編程:使用 OpenCV 和 CUDA 實時處理複雜圖像數據 (簡中版)
立即出貨 (庫存 < 3)
買這商品的人也買了...
-
$2,030$1,929 -
$480$408 -
$594$564 -
$594$564 -
$383視覺 SLAM 十四講:從理論到實踐
-
$602電腦視覺 : 一種現代方法, 2/e
-
$500$390 -
$3,280$3,116 -
$332GAN : 實戰生成對抗網絡
-
$650$553 -
$1,950$1,853 -
$500$395 -
$1,074$1,020 -
$780$616 -
$690$345 -
$1,690$1,606 -
$620$484 -
$1,880$1,786 -
$474$450 -
$2,540$2,413 -
$469ROS 機器人項目開發 11例, 2/e (ROS Robotics Projects, 2/e)
-
$954$906 -
$3,914Artificial Intelligence Hardware Design: Challenges and Solutions (Hardcover)
-
$479$455 -
$780$616
相關主題
商品描述
Discover how CUDA allows OpenCV to handle complex and rapidly growing image data processing in computer and machine vision by accessing the power of GPU
Key Features
- Explore examples to leverage the GPU processing power with OpenCV and CUDA
- Enhance the performance of algorithms on embedded hardware platforms
- Discover C++ and Python libraries for GPU acceleration
Book Description
Computer vision has been revolutionizing a wide range of industries, and OpenCV is the most widely chosen tool for computer vision with its ability to work in multiple programming languages. Nowadays, in computer vision, there is a need to process large images in real time, which is difficult to handle for OpenCV on its own. This is where CUDA comes into the picture, allowing OpenCV to leverage powerful NVDIA GPUs. This book provides a detailed overview of integrating OpenCV with CUDA for practical applications.
To start with, you'll understand GPU programming with CUDA, an essential aspect for computer vision developers who have never worked with GPUs. You'll then move on to exploring OpenCV acceleration with GPUs and CUDA by walking through some practical examples.
Once you have got to grips with the core concepts, you'll familiarize yourself with deploying OpenCV applications on NVIDIA Jetson TX1, which is popular for computer vision and deep learning applications. The last chapters of the book explain PyCUDA, a Python library that leverages the power of CUDA and GPUs for accelerations and can be used by computer vision developers who use OpenCV with Python.
By the end of this book, you'll have enhanced computer vision applications with the help of this book's hands-on approach.
What you will learn
- Understand how to access GPU device properties and capabilities from CUDA programs
- Learn how to accelerate searching and sorting algorithms
- Detect shapes such as lines and circles in images
- Explore object tracking and detection with algorithms
- Process videos using different video analysis techniques in Jetson TX1
- Access GPU device properties from the PyCUDA program
- Understand how kernel execution works
Who this book is for
This book is a go-to guide for you if you are a developer working with OpenCV and want to learn how to process more complex image data by exploiting GPU processing. A thorough understanding of computer vision concepts and programming languages such as C++ or Python is expected.
Table of Contents
- Introduction to CUDA and Getting Started with CUDA
- Parallel programming using CUDA C
- Threads,Synchronization and Memory
- Advanced concepts in CUDA
- Getting started with OpenCV with CUDA support
- Basic computer vision Operations using OpenCV and CUDA
- Object detection and tracking using OpenCV and CUDA
- Introduction to Jetson Tx1 development board and installing OpenCV on Jetson TX1
- Deploying computer vision applications on Jetson TX1
- Getting started with PyCUDA
- Working with PyCUDA
- Basic Computer vision application using PyCUDA
商品描述(中文翻譯)
**探索 CUDA 如何讓 OpenCV 處理複雜且快速增長的影像數據處理,藉由利用 GPU 的強大運算能力**
#### 主要特點
- 探索範例以利用 OpenCV 和 CUDA 的 GPU 處理能力
- 提升嵌入式硬體平台上演算法的效能
- 發現用於 GPU 加速的 C++ 和 Python 函式庫
#### 書籍描述
計算機視覺正在徹底改變各行各業,而 OpenCV 是最廣泛選擇的計算機視覺工具,因為它能夠在多種程式語言中運作。如今,在計算機視覺中,需要實時處理大型影像,這對 OpenCV 自身來說是個挑戰。這就是 CUDA 發揮作用的地方,讓 OpenCV 能夠利用強大的 NVIDIA GPU。本書提供了將 OpenCV 與 CUDA 整合以進行實際應用的詳細概述。
首先,您將了解 GPU 程式設計與 CUDA,這是對於從未使用過 GPU 的計算機視覺開發者來說至關重要的方面。接著,您將通過一些實際範例來探索使用 GPU 和 CUDA 加速 OpenCV 的方法。
一旦您掌握了核心概念,您將熟悉在 NVIDIA Jetson TX1 上部署 OpenCV 應用程式,該平台在計算機視覺和深度學習應用中非常受歡迎。本書的最後幾章解釋了 PyCUDA,這是一個利用 CUDA 和 GPU 加速的 Python 函式庫,計算機視覺開發者可以使用它來與 Python 中的 OpenCV 一起工作。
在本書結束時,您將能夠利用本書的實作方法增強計算機視覺應用程式。
#### 您將學到的內容
- 了解如何從 CUDA 程式訪問 GPU 設備屬性和能力
- 學習如何加速搜尋和排序演算法
- 在影像中檢測形狀,如直線和圓形
- 探索使用演算法的物體追蹤和檢測
- 使用不同的視頻分析技術處理 Jetson TX1 上的視頻
- 從 PyCUDA 程式訪問 GPU 設備屬性
- 了解內核執行的運作方式
#### 本書適合誰
如果您是使用 OpenCV 的開發者,並希望通過利用 GPU 處理來處理更複雜的影像數據,那麼本書將是您的首選指南。預期您對計算機視覺概念和 C++ 或 Python 等程式語言有透徹的理解。
#### 目錄
1. CUDA 簡介及開始使用 CUDA
2. 使用 CUDA C 的並行程式設計
3. 執行緒、同步與記憶體
4. CUDA 的進階概念
5. 開始使用支援 CUDA 的 OpenCV
6. 使用 OpenCV 和 CUDA 的基本計算機視覺操作
7. 使用 OpenCV 和 CUDA 的物體檢測與追蹤
8. Jetson TX1 開發板簡介及在 Jetson TX1 上安裝 OpenCV
9. 在 Jetson TX1 上部署計算機視覺應用程式
10. 開始使用 PyCUDA
11. 使用 PyCUDA
12. 使用 PyCUDA 的基本計算機視覺應用程式