Keras Reinforcement Learning Projects (Paperback)
暫譯: Keras 強化學習專案 (平裝本)
Giuseppe Ciaburro
- 出版商: Packt Publishing
- 出版日期: 2018-09-28
- 售價: $2,200
- 貴賓價: 9.5 折 $2,090
- 語言: 英文
- 頁數: 288
- 裝訂: Paperback
- ISBN: 1789342090
- ISBN-13: 9781789342093
-
相關分類:
DeepLearning、Reinforcement
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
$790$774 -
$1,362Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies (Hardcover)
-
$474$450 -
$301機器學習項目開發實戰 (Machine Learning Projects for .NET Developers)
-
$480$379 -
$320$272 -
$534$507 -
$360$180 -
$352物聯網設備安全 (Abousing the Internet of Things)
-
$590$460 -
$580$458 -
$1,860$1,767 -
$1,960Reinforcement Learning: With Open AI, TensorFlow and Keras Using Python
-
$474$450 -
$1,188Deep Reinforcement Learning Hands-On
-
$2,000$1,900 -
$1,450$1,378 -
$352Python 強化學習實戰 : 應用 OpenAI Gym 和 TensorFlow 精通強化學習和深度強化學習
-
$690$345 -
$1,200$948 -
$607深度強化學習:基於 Python 的理論及實踐
-
$414$393 -
$880$695 -
$414$393 -
$650$429
相關主題
商品描述
A practical guide to mastering reinforcement learning algorithms using Keras
Key Features
- Build projects across robotics, gaming, and finance fields, putting reinforcement learning (RL) into action
- Get to grips with Keras and practice on real-world unstructured datasets
- Uncover advanced deep learning algorithms such as Monte Carlo, Markov Decision, and Q-learning
Book Description
Reinforcement learning has evolved a lot in the last couple of years and proven to be a successful technique in building smart and intelligent AI networks. Keras Reinforcement Learning Projects installs human-level performance into your applications using algorithms and techniques of reinforcement learning, coupled with Keras, a faster experimental library.
The book begins with getting you up and running with the concepts of reinforcement learning using Keras. You'll learn how to simulate a random walk using Markov chains and select the best portfolio using dynamic programming (DP) and Python. You'll also explore projects such as forecasting stock prices using Monte Carlo methods, delivering vehicle routing application using Temporal Distance (TD) learning algorithms, and balancing a Rotating Mechanical System using Markov decision processes.
Once you've understood the basics, you'll move on to Modeling of a Segway, running a robot control system using deep reinforcement learning, and building a handwritten digit recognition model in Python using an image dataset. Finally, you'll excel in playing the board game Go with the help of Q-Learning and reinforcement learning algorithms.
By the end of this book, you'll not only have developed hands-on training on concepts, algorithms, and techniques of reinforcement learning but also be all set to explore the world of AI.
What you will learn
- Practice the Markov decision process in prediction and betting evaluations
- Implement Monte Carlo methods to forecast environment behaviors
- Explore TD learning algorithms to manage warehouse operations
- Construct a Deep Q-Network using Python and Keras to control robot movements
- Apply reinforcement concepts to build a handwritten digit recognition model using an image dataset
- Address a game theory problem using Q-Learning and OpenAI Gym
Who this book is for
Keras Reinforcement Learning Projects is for you if you are data scientist, machine learning developer, or AI engineer who wants to understand the fundamentals of reinforcement learning by developing practical projects. Sound knowledge of machine learning and basic familiarity with Keras is useful to get the most out of this book
Table of Contents
- Overview of Keras Reinforcement Learning
- Simulating random walks
- Optimal Portfolio Selection
- Forecasting stock market prices
- Delivery Vehicle Routing Application
- Prediction and Betting Evaluations of coin flips using Markov decision processes
- Build an optimized vending machine using Dynamic Programming
- Robot control system using Deep Reinforcement Learning
- Handwritten Digit Recognizer
- Playing the board game Go �
- What is next?
商品描述(中文翻譯)
**實用指南:掌握使用 Keras 的強化學習演算法**
**主要特點**
- 在機器人、遊戲和金融領域建立專案,將強化學習 (RL) 實踐應用
- 熟悉 Keras 並在真實的非結構化數據集上進行實踐
- 探索高級深度學習演算法,如蒙地卡羅 (Monte Carlo)、馬可夫決策 (Markov Decision) 和 Q-learning
**書籍描述**
強化學習在過去幾年中發展迅速,並已證明是一種成功的技術,用於構建智能和智慧的 AI 網絡。《Keras 強化學習專案》利用強化學習的演算法和技術,結合 Keras 這個更快的實驗庫,將人類級別的性能安裝到您的應用程式中。
本書首先讓您了解使用 Keras 的強化學習概念。您將學習如何使用馬可夫鏈模擬隨機漫步,並使用動態規劃 (DP) 和 Python 選擇最佳投資組合。您還將探索一些專案,例如使用蒙地卡羅方法預測股價、使用時間距離 (TD) 學習演算法提供車輛路由應用,以及使用馬可夫決策過程平衡旋轉機械系統。
一旦您理解了基本概念,您將進一步學習 Segway 的建模、使用深度強化學習運行機器人控制系統,以及使用圖像數據集在 Python 中構建手寫數字識別模型。最後,您將在 Q-Learning 和強化學習演算法的幫助下,精通圍棋這個棋盤遊戲。
在本書結束時,您不僅將獲得強化學習的概念、演算法和技術的實踐訓練,還將準備好探索 AI 的世界。
**您將學到什麼**
- 在預測和賭博評估中實踐馬可夫決策過程
- 實施蒙地卡羅方法以預測環境行為
- 探索 TD 學習演算法以管理倉庫操作
- 使用 Python 和 Keras 構建深度 Q 網絡以控制機器人運動
- 應用強化概念構建手寫數字識別模型,使用圖像數據集
- 使用 Q-Learning 和 OpenAI Gym 解決博弈論問題
**本書適合誰**
如果您是數據科學家、機器學習開發者或 AI 工程師,並希望通過開發實用專案來理解強化學習的基本原理,那麼《Keras 強化學習專案》適合您。對機器學習有良好的知識並對 Keras 有基本的熟悉度,將有助於您充分利用本書。
**目錄**
1. Keras 強化學習概述
2. 模擬隨機漫步
3. 最佳投資組合選擇
4. 預測股市價格
5. 送貨車輛路由應用
6. 使用馬可夫決策過程進行硬幣擲出預測和賭博評估
7. 使用動態規劃構建優化的自動販賣機
8. 使用深度強化學習的機器人控制系統
9. 手寫數字識別器
10. 玩圍棋
11. 接下來是什麼?