Caffe2 Quick Start Guide
Nanjappa, Ashwin
- 出版商: Packt Publishing
- 出版日期: 2019-05-31
- 售價: $1,240
- 貴賓價: 9.5 折 $1,178
- 語言: 英文
- 頁數: 136
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1789137756
- ISBN-13: 9781789137750
-
相關分類:
DeepLearning
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
$1,850$1,758 -
$900$882 -
$1,400$1,330 -
$825Inside the Microsoft Build Engine: Using MSBuild and Team Foundation Build (Paperback)
-
$2,010$1,910 -
$352密碼學 (C\C++語言實現原書第2版)
-
$2,940$2,793 -
$1,500$1,425 -
$266移動端機器學習實戰
-
$534$507 -
$352Python 網絡編程從入門到精通
-
$480$379 -
$1,980$1,881 -
$774$735 -
$580$458 -
$238基於 Android Studio 的案例教程, 2/e
-
$594$564 -
$620$558 -
$1,050$998 -
$1,200$1,020 -
$449物聯網及低功耗藍牙5.x高級開發
-
$2,680$2,546 -
$620$484 -
$500$395 -
$380$342
相關主題
商品描述
Caffe2 is a popular deep learning library used for fast and scalable training and inference of deep learning models on various platforms. This book introduces you to the Caffe2 framework and shows how you can leverage its power to build, train, and deploy efficient neural network models at scale.
It will cover the topics of installing Caffe2, composing networks using its operators, training models, and deploying models to different architectures. It will also show how to import models from Caffe and from other frameworks using the ONNX interchange format. It covers the topic of deep learning accelerators such as CPU and GPU and shows how to deploy Caffe2 models for inference on accelerators using inference engines. Caffe2 is built for deployment to a diverse set of hardware, using containers on the cloud and resource constrained hardware such as Raspberry Pi, which will be demonstrated.
By the end of this book, you will be able to not only compose and train popular neural network models with Caffe2, but also be able to deploy them on accelerators, to the cloud and on resource constrained platforms such as mobile and embedded hardware.
商品描述(中文翻譯)
Caffe2 是一個廣泛使用於各種平台上進行快速且可擴展的深度學習模型訓練和推論的流行深度學習庫。本書將介紹 Caffe2 框架,並展示如何利用其強大功能來構建、訓練和部署高效的神經網絡模型。
本書將涵蓋安裝 Caffe2、使用其運算子組合網絡、訓練模型以及將模型部署到不同架構的主題。它還將展示如何使用 ONNX 交換格式從 Caffe 和其他框架導入模型。本書還涵蓋了 CPU 和 GPU 等深度學習加速器的主題,並展示了如何使用推論引擎在加速器上部署 Caffe2 模型進行推論。Caffe2 適用於部署到各種硬件上,包括在雲端上使用容器和資源受限的硬件,如 Raspberry Pi,本書將進行演示。
通過閱讀本書,您將能夠使用 Caffe2 構建和訓練流行的神經網絡模型,並能夠將它們部署到加速器、雲端以及資源受限的平台,如移動設備和嵌入式硬件。