Recurrent Neural Networks with Python Quick Start Guide: Sequential learning and language modeling with TensorFlow

Simeon Kostadinov

  • 出版商: Packt Publishing
  • 出版日期: 2018-11-29
  • 售價: $1,440
  • 貴賓價: 9.5$1,368
  • 語言: 英文
  • 頁數: 122
  • 裝訂: Paperback
  • ISBN: 1789132339
  • ISBN-13: 9781789132335
  • 相關分類: Python程式語言DeepLearningTensorFlow
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Learn how to develop intelligent applications with sequential learning and apply modern methods for language modeling with neural network architectures for deep learning with Python's most popular TensorFlow framework.

Key Features

  • Train and deploy Recurrent Neural Networks using the popular TensorFlow library
  • Apply long short-term memory units
  • Expand your skills in complex neural network and deep learning topics

Book Description

Developers struggle to find an easy-to-follow learning resource for implementing Recurrent Neural Network (RNN) models. RNNs are the state-of-the-art model in deep learning for dealing with sequential data. From language translation to generating captions for an image, RNNs are used to continuously improve results. This book will teach you the fundamentals of RNNs, with example applications in Python and the TensorFlow library. The examples are accompanied by the right combination of theoretical knowledge and real-world implementations of concepts to build a solid foundation of neural network modeling.

Your journey starts with the simplest RNN model, where you can grasp the fundamentals. The book then builds on this by proposing more advanced and complex algorithms. We use them to explain how a typical state-of-the-art RNN model works. From generating text to building a language translator, we show how some of today's most powerful AI applications work under the hood.

After reading the book, you will be confident with the fundamentals of RNNs, and be ready to pursue further study, along with developing skills in this exciting field.

What you will learn

  • Use TensorFlow to build RNN models
  • Use the correct RNN architecture for a particular machine learning task
  • Collect and clear the training data for your models
  • Use the correct Python libraries for any task during the building phase of your model
  • Optimize your model for higher accuracy
  • Identify the differences between multiple models and how you can substitute them
  • Learn the core deep learning fundamentals applicable to any machine learning model

Who this book is for

This book is for Machine Learning engineers and data scientists who want to learn about Recurrent Neural Network models with practical use-cases. Exposure to Python programming is required. Previous experience with TensorFlow will be helpful, but not mandatory.

Table of Contents

  1. Introducing Recurrent Neural Networks
  2. Building Your First RNN with TensorFlow
  3. Generating Your Own Book Chapter
  4. Creating a Spanish-to-English Translator
  5. Build Your Personal Assistant
  6. Improve Your RNN Performance

商品描述(中文翻譯)

學習如何使用序列學習開發智能應用程式,並應用現代方法進行語言建模,利用 Python 最受歡迎的 TensorFlow 框架中的神經網絡架構進行深度學習。

主要特點
- 使用流行的 TensorFlow 庫訓練和部署遞迴神經網絡(RNN)
- 應用長短期記憶單元(LSTM)
- 擴展您在複雜神經網絡和深度學習主題的技能

書籍描述
開發者在尋找易於遵循的學習資源以實現遞迴神經網絡(RNN)模型時常常感到困難。RNN 是深度學習中處理序列數據的最先進模型。從語言翻譯到為圖像生成標題,RNN 被用來不斷改善結果。本書將教您 RNN 的基本原理,並提供 Python 和 TensorFlow 庫中的示例應用。這些示例結合了理論知識和現實世界概念的實現,幫助您建立堅實的神經網絡建模基礎。

您的旅程從最簡單的 RNN 模型開始,讓您掌握基本概念。然後本書將在此基礎上提出更高級和複雜的算法。我們將使用這些算法來解釋典型的最先進 RNN 模型是如何運作的。從生成文本到構建語言翻譯器,我們展示了當今一些最強大的 AI 應用程序的運作原理。

閱讀本書後,您將對 RNN 的基本原理充滿信心,並準備進一步學習,同時在這個令人興奮的領域中發展技能。

您將學到的內容
- 使用 TensorFlow 構建 RNN 模型
- 為特定的機器學習任務使用正確的 RNN 架構
- 收集和清理模型的訓練數據
- 在模型構建階段使用正確的 Python 庫
- 優化模型以提高準確性
- 識別多個模型之間的差異以及如何替換它們
- 學習適用於任何機器學習模型的核心深度學習基本原理

本書適合誰
本書適合希望了解具有實際案例的遞迴神經網絡模型的機器學習工程師和數據科學家。需要具備 Python 編程的基礎知識。先前使用 TensorFlow 的經驗將有幫助,但不是必需的。

目錄
1. 介紹遞迴神經網絡
2. 使用 TensorFlow 構建您的第一個 RNN
3. 生成您自己的書章
4. 創建西班牙語到英語的翻譯器
5. 構建您的個人助理
6. 改善您的 RNN 性能

最後瀏覽商品 (1)