Java Deep Learning Projects: Implement 10 real-world deep learning applications using Deeplearning4j and open source APIs
暫譯: Java 深度學習專案:使用 Deeplearning4j 和開源 API 實作 10 個真實世界的深度學習應用程式

Md. Rezaul Karim

  • 出版商: Packt Publishing
  • 出版日期: 2018-06-29
  • 售價: $1,650
  • 貴賓價: 9.5$1,568
  • 語言: 英文
  • 頁數: 436
  • 裝訂: Paperback
  • ISBN: 178899745X
  • ISBN-13: 9781788997454
  • 相關分類: Java 程式語言DeepLearning
  • 立即出貨 (庫存=1)

買這商品的人也買了...

商品描述

Build and deploy powerful neural network models using the latest Java deep learning libraries

Key Features

  • Understand DL with Java by implementing real-world projects
  • Master implementations of various ANN models and build your own DL systems
  • Develop applications using NLP, image classification, RL, and GPU processing

Book Description

Java is one of the most widely used programming languages. With the rise of deep learning, it has become a popular choice of tool among data scientists and machine learning experts.

Java Deep Learning Projects starts with an overview of deep learning concepts and then delves into advanced projects. You will see how to build several projects using different deep neural network architectures such as multilayer perceptrons, Deep Belief Networks, CNN, LSTM, and Factorization Machines.

You will get acquainted with popular deep and machine learning libraries for Java such as Deeplearning4j, Spark ML, and RankSys and you'll be able to use their features to build and deploy projects on distributed computing environments.

You will then explore advanced domains such as transfer learning and deep reinforcement learning using the Java ecosystem, covering various real-world domains such as healthcare, NLP, image classification, and multimedia analytics with an easy-to-follow approach. Expert reviews and tips will follow every project to give you insights and hacks.

By the end of this book, you will have stepped up your expertise when it comes to deep learning in Java, taking it beyond theory and be able to build your own advanced deep learning systems.

What you will learn

  • Master deep learning and neural network architectures
  • Build real-life applications covering image classification, object detection, online trading, transfer learning, and multimedia analytics using DL4J and open-source APIs
  • Train ML agents to learn from data using deep reinforcement learning
  • Use factorization machines for advanced movie recommendations
  • Train DL models on distributed GPUs for faster deep learning with Spark and DL4J
  • Ease your learning experience through 69 FAQs

Who This Book Is For

If you are a data scientist, machine learning professional, or deep learning practitioner keen to expand your knowledge by delving into the practical aspects of deep learning with Java, then this book is what you need! Get ready to build advanced deep learning models to carry out complex numerical computations. Some basic understanding of machine learning concepts and a working knowledge of Java are required.

Table of Contents

  1. Getting Started with Deep Learning
  2. Cancer Type Prediction using Recurrent Type Networks
  3. Image Classification using Convolutional Neural Networks
  4. Sentiment Analysis using Word2Vec and LSTM Networks
  5. Image Classification using Transfer Learning
  6. Real-Time Object Detection Using YOLO, JavaCV, and DL4J
  7. Stock Price Prediction Using the LSTM Network
  8. Distributed Deep Learning – Video Classification Using Convolutional-LSTM Networks
  9. Using Deep Reinforcement Learning for a GridWorld Game
  10. Movie Recommendation System using Factorization Machines
  11. Discussion, Current Trends, and Outlook

商品描述(中文翻譯)

**使用最新的 Java 深度學習庫構建和部署強大的神經網絡模型**

### 主要特點
- 通過實施實際項目來理解 Java 的深度學習
- 精通各種人工神經網絡(ANN)模型的實現,並構建自己的深度學習系統
- 使用自然語言處理(NLP)、圖像分類、強化學習(RL)和 GPU 處理開發應用程序

### 書籍描述
Java 是最廣泛使用的編程語言之一。隨著深度學習的興起,它已成為數據科學家和機器學習專家的熱門工具選擇。

《Java 深度學習項目》首先概述了深度學習的概念,然後深入探討高級項目。您將看到如何使用不同的深度神經網絡架構構建幾個項目,例如多層感知器、深度信念網絡、卷積神經網絡(CNN)、長短期記憶(LSTM)和分解機。

您將熟悉流行的 Java 深度學習和機器學習庫,如 Deeplearning4j、Spark ML 和 RankSys,並能夠利用它們的功能在分佈式計算環境中構建和部署項目。

接下來,您將探索高級領域,如轉移學習和深度強化學習,使用 Java 生態系統涵蓋各種實際領域,如醫療保健、自然語言處理、圖像分類和多媒體分析,並採用易於理解的方法。每個項目後面都會有專家的評價和提示,以提供見解和技巧。

到本書結束時,您將在 Java 的深度學習方面提升專業知識,超越理論,能夠構建自己的高級深度學習系統。

### 您將學到什麼
- 精通深度學習和神經網絡架構
- 構建涵蓋圖像分類、物體檢測、在線交易、轉移學習和多媒體分析的實際應用,使用 DL4J 和開源 API
- 訓練機器學習代理從數據中學習,使用深度強化學習
- 使用分解機進行高級電影推薦
- 在分佈式 GPU 上訓練深度學習模型,以便使用 Spark 和 DL4J 進行更快的深度學習
- 通過 69 個常見問題簡化您的學習體驗

### 本書適合誰
如果您是數據科學家、機器學習專業人士或深度學習從業者,渴望通過深入實踐 Java 的深度學習來擴展知識,那麼這本書正是您所需!準備好構建高級深度學習模型以進行複雜的數值計算。需要對機器學習概念有基本了解,並具備 Java 的工作知識。

### 目錄
1. 深度學習入門
2. 使用遞歸類型網絡進行癌症類型預測
3. 使用卷積神經網絡進行圖像分類
4. 使用 Word2Vec 和 LSTM 網絡進行情感分析
5. 使用轉移學習進行圖像分類
6. 使用 YOLO、JavaCV 和 DL4J 進行實時物體檢測
7. 使用 LSTM 網絡進行股價預測
8. 分佈式深度學習 – 使用卷積-LSTM 網絡進行視頻分類
9. 使用深度強化學習進行 GridWorld 遊戲
10. 使用分解機的電影推薦系統
11. 討論、當前趨勢和展望