Hands-On GPU Programming with Python and CUDA: Boost your application's performance and productivity with CUDA: Explore high-performance parallel computing with CUDA (Paperback)
暫譯: 使用 Python 和 CUDA 的實作 GPU 程式設計:提升應用程式的效能與生產力,探索高效能平行運算 (平裝本)

Dr. Brian Tuomanen

買這商品的人也買了...

相關主題

商品描述

Build real-world applications by writing effective GPU code, CUDA kernels, and device functions with the latest features of Python 3.7, CUDA 9 and CUDA 10

Key Features

  • Expand your background in GPU programming PyCUDA, scikit-cuda, and Nsight
  • Effectively use CUDA libraries such as cuBLAS, cuFFT, and cuSolver
  • Apply GPU programming to modern data science applications

Book Description

Hands-On GPU Programming with Python and CUDA hits the ground running: you ll start by learning how to apply Amdahl s Law, use a code profiler to identify bottlenecks in your Python code, and set up an appropriate GPU programming environment. You ll then see how to query the GPU s features and copy arrays of data to and from the GPU s own memory.

As you make your way through the book, you ll launch code directly onto the GPU and write full blown GPU kernels and device functions in CUDA C. You ll get to grips with profiling GPU code effectively and fully test and debug your code using Nsight IDE. Next, you ll explore some of the more well-known NVIDIA libraries, such as cuFFT and cuBLAS.

With a solid background in place, you will now apply your new-found knowledge to develop your very own GPU-based deep neural network from scratch. You ll then explore advanced topics, such as warp shuffling, dynamic parallelism, and PTX assembly. In the final chapter, you ll see some topics and applications related to GPU programming that you may wish to pursue, including AI, graphics, and blockchain.

By the end of this book, you will be able to apply GPU programming to problems related to data science and high-performance computing.

What you will learn

  • Launch GPU code directly from Python
  • Write effective and efficient GPU kernels and device functions
  • Use libraries such as cuFFT, cuBLAS, and cuSolver
  • Debug and profile your code with Nsight and Visual Profiler
  • Apply GPU programming to datascience problems
  • Build a GPU-based deep neuralnetwork from scratch
  • Explore advanced GPU hardware features, such as warp shuffling

Who this book is for

Hands-On GPU Programming with Python and CUDA is for developers and data scientists who want to learn the basics of effective GPU programming to improve performance using Python code. You should have an understanding of first-year college or university-level engineering mathematics and physics, and have some experience with Python as well as in any C-based programming language such as C, C++, Go, or Java.

Table of Contents

  1. Why GPU Programming?
  2. Setting Up Your GPU Programming Environment
  3. Getting Started with PyCUDA
  4. Kernels, Threads, Blocks, and Grids
  5. Streams, Events, Contexts, and Concurrency
  6. Debugging and Profiling Your CUDA Code
  7. Using the CUDA Libraries with Scikit-CUDA Draft complete
  8. The CUDA Device Function Libraries and Thrust
  9. Implementing a Deep Neural Network
  10. Working with Compiled GPU Code
  11. Performance Optimization in CUDA
  12. Where to Go from Here

商品描述(中文翻譯)

**透過撰寫有效的 GPU 代碼、CUDA 核心和設備函數,利用 Python 3.7、CUDA 9 和 CUDA 10 的最新功能構建實際應用程序**

#### 主要特點

- 擴展您在 GPU 編程方面的背景,使用 PyCUDA、scikit-cuda 和 Nsight
- 有效使用 CUDA 函式庫,如 cuBLAS、cuFFT 和 cuSolver
- 將 GPU 編程應用於現代數據科學應用

#### 書籍描述

《Hands-On GPU Programming with Python and CUDA》將迅速帶您進入主題:您將首先學習如何應用阿姆達爾法則(Amdahl's Law),使用代碼分析器識別 Python 代碼中的瓶頸,並設置適當的 GPU 編程環境。接著,您將學習如何查詢 GPU 的功能,並將數據陣列複製到 GPU 自有的記憶體中。

在閱讀本書的過程中,您將直接在 GPU 上啟動代碼,並用 CUDA C 編寫完整的 GPU 核心和設備函數。您將掌握有效分析 GPU 代碼的技巧,並使用 Nsight IDE 完全測試和除錯您的代碼。接下來,您將探索一些更知名的 NVIDIA 函式庫,如 cuFFT 和 cuBLAS。

在建立了堅實的基礎後,您將應用新獲得的知識,從零開始開發自己的基於 GPU 的深度神經網絡。然後,您將探索一些進階主題,如 warp shuffling、動態平行性和 PTX 組合語言。在最後一章中,您將看到一些與 GPU 編程相關的主題和應用,您可能希望進一步研究,包括人工智慧、圖形學和區塊鏈。

到本書結束時,您將能夠將 GPU 編程應用於與數據科學和高效能計算相關的問題。

#### 您將學到的內容

- 從 Python 直接啟動 GPU 代碼
- 撰寫有效且高效的 GPU 核心和設備函數
- 使用如 cuFFT、cuBLAS 和 cuSolver 的函式庫
- 使用 Nsight 和 Visual Profiler 進行代碼除錯和分析
- 將 GPU 編程應用於數據科學問題
- 從零開始構建基於 GPU 的深度神經網絡
- 探索進階的 GPU 硬體特性,如 warp shuffling

#### 本書適合誰

《Hands-On GPU Programming with Python and CUDA》適合希望學習有效 GPU 編程基礎以提升 Python 代碼性能的開發者和數據科學家。您應該具備大學一年級工程數學和物理的理解,並且有一些 Python 以及任何基於 C 的編程語言(如 C、C++、Go 或 Java)的經驗。

#### 目錄

1. 為什麼選擇 GPU 編程?
2. 設置您的 GPU 編程環境
3. 開始使用 PyCUDA
4. 核心、執行緒、區塊和網格
5. 流、事件、上下文和並發
6. 除錯和分析您的 CUDA 代碼
7. 使用 Scikit-CUDA 的 CUDA 函式庫
8. CUDA 設備函數庫和 Thrust
9. 實現深度神經網絡
10. 使用編譯的 GPU 代碼
11. CUDA 中的性能優化
12. 接下來該怎麼做