Hands-On Reinforcement Learning with Python: Master reinforcement and deep reinforcement learning using OpenAI Gym and TensorFlow
暫譯: 使用 Python 實作強化學習:掌握強化學習和深度強化學習,運用 OpenAI Gym 和 TensorFlow

Sudharsan Ravichandiran

買這商品的人也買了...

相關主題

商品描述

A hands-on guide enriched with examples to master deep reinforcement learning algorithms with Python

Key Features

  • Your entry point into the world of artificial intelligence using the power of Python
  • An example-rich guide to master various RL and DRL algorithms
  • Explore various state-of-the-art architectures along with math

Book Description

Reinforcement Learning (RL) is the trending and most promising branch of artificial intelligence. Hands-On Reinforcement learning with Python will help you master not only the basic reinforcement learning algorithms but also the advanced deep reinforcement learning algorithms.

The book starts with an introduction to Reinforcement Learning followed by OpenAI Gym, and TensorFlow. You will then explore various RL algorithms and concepts, such as Markov Decision Process, Monte Carlo methods, and dynamic programming, including value and policy iteration. This example-rich guide will introduce you to deep reinforcement learning algorithms, such as Dueling DQN, DRQN, A3C, PPO, and TRPO. You will also learn about imagination-augmented agents, learning from human preference, DQfD, HER, and many more of the recent advancements in reinforcement learning.

By the end of the book, you will have all the knowledge and experience needed to implement reinforcement learning and deep reinforcement learning in your projects, and you will be all set to enter the world of artificial intelligence.

What you will learn

  • Understand the basics of reinforcement learning methods, algorithms, and elements
  • Train an agent to walk using OpenAI Gym and Tensorflow
  • Understand the Markov Decision Process, Bellman's optimality, and TD learning
  • Solve multi-armed-bandit problems using various algorithms
  • Master deep learning algorithms, such as RNN, LSTM, and CNN with applications
  • Build intelligent agents using the DRQN algorithm to play the Doom game
  • Teach agents to play the Lunar Lander game using DDPG
  • Train an agent to win a car racing game using dueling DQN

Who This Book Is For

If you're a machine learning developer or deep learning enthusiast interested in artificial intelligence and want to learn about reinforcement learning from scratch, this book is for you. Some knowledge of linear algebra, calculus, and the Python programming language will help you understand the concepts covered in this book.

Table of Contents

  1. Introduction to Reinforcement Learning
  2. Getting started with OpenAI and Tensorflow
  3. Markov Decision process and Dynamic Programming
  4. Gaming with Monte Carlo Tree Search
  5. Temporal Difference Learning
  6. Multi-Armed Bandit Problem
  7. Deep Learning Fundamentals
  8. Deep Learning and Reinforcement
  9. Playing Doom With Deep Recurrent Q Network
  10. Asynchronous Advantage Actor Critic Network
  11. Policy Gradients and Optimization
  12. Capstone Project Car Racing using DQN
  13. Current Research and Next Steps

商品描述(中文翻譯)

**一本以範例豐富的實作指南,幫助您掌握使用 Python 的深度強化學習演算法**

#### 主要特點

- 您進入人工智慧世界的入門點,利用 Python 的強大功能
- 一本範例豐富的指南,幫助您掌握各種強化學習 (RL) 和深度強化學習 (DRL) 演算法
- 探索各種最先進的架構及其數學基礎

#### 書籍描述

強化學習 (Reinforcement Learning, RL) 是人工智慧中最具潛力和趨勢的分支。《Hands-On Reinforcement Learning with Python》將幫助您掌握不僅是基本的強化學習演算法,還有進階的深度強化學習演算法。

本書首先介紹強化學習,接著介紹 OpenAI Gym 和 TensorFlow。然後,您將探索各種 RL 演算法和概念,例如馬可夫決策過程 (Markov Decision Process)、蒙地卡羅方法 (Monte Carlo methods) 和動態規劃 (dynamic programming),包括價值迭代和策略迭代。這本範例豐富的指南將介紹深度強化學習演算法,如 Dueling DQN、DRQN、A3C、PPO 和 TRPO。您還將學習到想像增強代理 (imagination-augmented agents)、從人類偏好中學習 (learning from human preference)、DQfD、HER 以及許多最近在強化學習領域的進展。

在本書結束時,您將擁有實施強化學習和深度強化學習所需的所有知識和經驗,並準備好進入人工智慧的世界。

#### 您將學到什麼

- 理解強化學習方法、演算法和要素的基本概念
- 使用 OpenAI Gym 和 TensorFlow 訓練代理行走
- 理解馬可夫決策過程、貝爾曼最優性 (Bellman's optimality) 和時間差學習 (TD learning)
- 使用各種演算法解決多臂賭徒問題 (multi-armed-bandit problems)
- 精通深度學習演算法,如 RNN、LSTM 和 CNN 及其應用
- 使用 DRQN 演算法構建智能代理來玩 Doom 遊戲
- 使用 DDPG 教導代理玩 Lunar Lander 遊戲
- 使用 Dueling DQN 訓練代理贏得賽車遊戲

#### 本書適合誰

如果您是機器學習開發者或對人工智慧感興趣的深度學習愛好者,並希望從零開始學習強化學習,那麼這本書適合您。對線性代數、微積分和 Python 程式語言的基本知識將有助於您理解本書所涵蓋的概念。

#### 目錄

1. 強化學習簡介
2. 開始使用 OpenAI 和 TensorFlow
3. 馬可夫決策過程與動態規劃
4. 使用蒙地卡羅樹搜尋進行遊戲
5. 時間差學習
6. 多臂賭徒問題
7. 深度學習基礎
8. 深度學習與強化學習
9. 使用深度重複 Q 網路玩 Doom
10. 非同步優勢演員評論網路
11. 策略梯度與優化
12. 使用 DQN 的賽車專案
13. 當前研究與下一步