Hands-On Computer Vision with Tensorflow 2
暫譯: 實戰電腦視覺與 TensorFlow 2

Planche, Benjamin, Andres, Eliot

買這商品的人也買了...

相關主題

商品描述

Computer vision solutions are becoming increasingly common, making their way into fields such as health, automobile, social media, and robotics. This book will help you explore TensorFlow 2, the brand new version of Google's open source framework for machine learning. You will understand how to benefit from using convolutional neural networks (CNNs) for visual tasks.

Hands-On Computer Vision with TensorFlow 2 starts with the fundamentals of computer vision and deep learning, teaching you how to build a neural network from scratch. You will discover the features that have made TensorFlow the most widely used AI library, along with its intuitive Keras interface. You'll then move on to building, training, and deploying CNNs efficiently. Complete with concrete code examples, the book demonstrates how to classify images with modern solutions, such as Inception and ResNet, and extract specific content using You Only Look Once (YOLO), Mask R-CNN, and U-Net. You will also build generative adversarial networks (GANs) and variational autoencoders (VAEs) to create and edit images, and long short-term memory networks (LSTMs) to analyze videos. In the process, you will acquire advanced insights into transfer learning, data augmentation, domain adaptation, and mobile and web deployment, among other key concepts.

By the end of the book, you will have both the theoretical understanding and practical skills to solve advanced computer vision problems with TensorFlow 2.0.

商品描述(中文翻譯)

電腦視覺解決方案正變得越來越普遍,進入健康、汽車、社交媒體和機器人等領域。本書將幫助您探索 TensorFlow 2,這是 Google 的開源機器學習框架的全新版本。您將了解如何利用卷積神經網絡(CNN)來處理視覺任務。

《Hands-On Computer Vision with TensorFlow 2》從電腦視覺和深度學習的基本原理開始,教您如何從零開始構建神經網絡。您將發現使 TensorFlow 成為最廣泛使用的 AI 庫的特性,以及其直觀的 Keras 介面。接著,您將學習如何高效地構建、訓練和部署 CNN。這本書提供具體的代碼範例,展示如何使用現代解決方案(如 Inception 和 ResNet)對圖像進行分類,以及如何使用 You Only Look Once(YOLO)、Mask R-CNN 和 U-Net 提取特定內容。您還將構建生成對抗網絡(GAN)和變分自編碼器(VAE)來創建和編輯圖像,以及使用長短期記憶網絡(LSTM)來分析視頻。在此過程中,您將獲得有關遷移學習、數據增強、領域適應以及移動和網頁部署等關鍵概念的深入見解。

到本書結束時,您將擁有理論理解和實踐技能,以使用 TensorFlow 2.0 解決高級電腦視覺問題。