Hands-On Computer Vision with Tensorflow 2
Planche, Benjamin, Andres, Eliot
- 出版商: Packt Publishing
- 出版日期: 2019-05-30
- 售價: $1,395
- 貴賓價: 9.5 折 $1,325
- 語言: 英文
- 頁數: 372
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1788830644
- ISBN-13: 9781788830645
-
相關分類:
DeepLearning、TensorFlow、Computer Vision
-
相關翻譯:
計算機視覺實戰:基於TensorFlow 2 (簡中版)
立即出貨 (庫存=1)
買這商品的人也買了...
-
$1,500$1,425 -
$281程序員修煉之道 :從小工到專家 (The Pragmatic Programmer: From Journeyman to Master)
-
$520$494 -
$980$774 -
$474$450 -
$2,650$2,518 -
$680$578 -
$2,538Deep Learning for Medical Image Analysis
-
$530$419 -
$450$356 -
$360$284 -
$294$279 -
$880$695 -
$1,020$969 -
$480$379 -
$1,440$1,368 -
$1,020$969 -
$1,810$1,720 -
$520$406 -
$520$411 -
$1,810$1,720 -
$690$545 -
$882Deep Learning with TensorFlow 2 and Keras, 2/e (Paperback)
-
$1,500$1,425 -
$500$390
相關主題
商品描述
Computer vision solutions are becoming increasingly common, making their way into fields such as health, automobile, social media, and robotics. This book will help you explore TensorFlow 2, the brand new version of Google's open source framework for machine learning. You will understand how to benefit from using convolutional neural networks (CNNs) for visual tasks.
Hands-On Computer Vision with TensorFlow 2 starts with the fundamentals of computer vision and deep learning, teaching you how to build a neural network from scratch. You will discover the features that have made TensorFlow the most widely used AI library, along with its intuitive Keras interface. You'll then move on to building, training, and deploying CNNs efficiently. Complete with concrete code examples, the book demonstrates how to classify images with modern solutions, such as Inception and ResNet, and extract specific content using You Only Look Once (YOLO), Mask R-CNN, and U-Net. You will also build generative adversarial networks (GANs) and variational autoencoders (VAEs) to create and edit images, and long short-term memory networks (LSTMs) to analyze videos. In the process, you will acquire advanced insights into transfer learning, data augmentation, domain adaptation, and mobile and web deployment, among other key concepts.
By the end of the book, you will have both the theoretical understanding and practical skills to solve advanced computer vision problems with TensorFlow 2.0.
商品描述(中文翻譯)
計算機視覺解決方案正變得越來越普遍,已應用於健康、汽車、社交媒體和機器人等領域。本書將幫助您探索 TensorFlow 2,這是 Google 最新的開源機器學習框架。您將了解如何使用卷積神經網絡(CNN)進行視覺任務。
《使用 TensorFlow 2 進行實踐計算機視覺》從計算機視覺和深度學習的基礎知識開始,教您如何從頭開始構建神經網絡。您將了解到使 TensorFlow 成為最廣泛使用的人工智能庫的特點,以及其直觀的 Keras 接口。然後,您將學習如何高效地構建、訓練和部署 CNN。書中提供了具體的代碼示例,演示了如何使用現代解決方案(如 Inception 和 ResNet)對圖像進行分類,以及如何使用 You Only Look Once(YOLO)、Mask R-CNN 和 U-Net 提取特定內容。您還將構建生成對抗網絡(GAN)和變分自編碼器(VAE)來創建和編輯圖像,以及使用長短期記憶網絡(LSTM)分析視頻。在此過程中,您將獲得關於遷移學習、數據增強、領域適應以及移動和網絡部署等關鍵概念的高級見解。
通過閱讀本書,您將在理論和實踐技能上都具備解決高級計算機視覺問題的能力,並能使用 TensorFlow 2.0。