Machine Learning Quick Reference: Quick and essential machine learning hacks for training smart data models
暫譯: 機器學習快速參考:訓練智能數據模型的快速與必要機器學習技巧
Rahul Kumar
- 出版商: Packt Publishing
- 出版日期: 2019-01-31
- 售價: $1,450
- 貴賓價: 9.5 折 $1,378
- 語言: 英文
- 頁數: 294
- 裝訂: Paperback
- ISBN: 1788830571
- ISBN-13: 9781788830577
-
相關分類:
Machine Learning
海外代購書籍(需單獨結帳)
相關主題
商品描述
Your hands-on reference guide to developing, training, and optimizing your machine learning models
Key Features
- Your guide to learning efficient machine learning processes from scratch
- Explore expert techniques and hacks for a variety of machine learning concepts
- Write effective code in R, Python, Scala, and Spark to solve all your machine learning problems
Book Description
Machine learning makes it possible to learn about the unknowns and gain hidden insights into your datasets by mastering many tools and techniques. This book guides you to do just that in a very compact manner.
After giving a quick overview of what machine learning is all about, Machine Learning Quick Reference jumps right into its core algorithms and demonstrates how they can be applied to real-world scenarios. From model evaluation to optimizing their performance, this book will introduce you to the best practices in machine learning. Furthermore, you will also look at the more advanced aspects such as training neural networks and work with different kinds of data, such as text, time-series, and sequential data. Advanced methods and techniques such as causal inference, deep Gaussian processes, and more are also covered.
By the end of this book, you will be able to train fast, accurate machine learning models at your fingertips, which you can easily use as a point of reference.
What you will learn
- Get a quick rundown of model selection, statistical modeling, and cross-validation
- Choose the best machine learning algorithm to solve your problem
- Explore kernel learning, neural networks, and time-series analysis
- Train deep learning models and optimize them for maximum performance
- Briefly cover Bayesian techniques and sentiment analysis in your NLP solution
- Implement probabilistic graphical models and causal inferences
- Measure and optimize the performance of your machine learning models
Who this book is for
If you're a machine learning practitioner, data scientist, machine learning developer, or engineer, this book will serve as a reference point in building machine learning solutions. You will also find this book useful if you're an intermediate machine learning developer or data scientist looking for a quick, handy reference to all the concepts of machine learning. You'll need some exposure to machine learning to get the best out of this book.
Table of Contents
- Quantifying Learning Algorithms
- Evaluating Kernel Learning
- Performance in Ensemble Learning
- Training Neural Networks
- Time-Series Analysis
- Natural Language Processing
- Temporal and Sequential Pattern Discovery
- Probabilistic Graphical Models
- Selected Topics in Deep Learning
- Causal Inference
- Advanced Methods
商品描述(中文翻譯)
您的實作參考指南,幫助您開發、訓練和優化機器學習模型
主要特點
- 從零開始學習高效的機器學習流程
- 探索各種機器學習概念的專家技術和技巧
- 使用 R、Python、Scala 和 Spark 撰寫有效的程式碼,以解決所有機器學習問題
書籍描述
機器學習使得通過掌握多種工具和技術來了解未知數據並獲得隱藏的見解成為可能。本書以非常簡潔的方式指導您做到這一點。
在快速概述機器學習的基本概念後,《機器學習快速參考》直接進入其核心算法,並演示如何將這些算法應用於現實世界的場景。從模型評估到優化其性能,本書將介紹機器學習中的最佳實踐。此外,您還將了解更高級的方面,例如訓練神經網絡以及處理各種數據類型,如文本、時間序列和序列數據。還涵蓋了因果推斷、深度高斯過程等先進方法和技術。
在本書結束時,您將能夠快速、準確地訓練機器學習模型,並輕鬆使用它們作為參考點。
您將學到的內容
- 快速了解模型選擇、統計建模和交叉驗證
- 選擇最佳的機器學習算法來解決您的問題
- 探索核學習、神經網絡和時間序列分析
- 訓練深度學習模型並優化其性能
- 簡要介紹貝葉斯技術和情感分析在您的自然語言處理解決方案中的應用
- 實施概率圖模型和因果推斷
- 測量和優化您的機器學習模型的性能
本書適合誰
如果您是機器學習從業者、數據科學家、機器學習開發者或工程師,本書將作為構建機器學習解決方案的參考點。如果您是中級機器學習開發者或數據科學家,尋找快速、方便的機器學習概念參考,本書也將對您有所幫助。您需要對機器學習有一定的了解,以便從本書中獲得最佳收益。
目錄
1. 量化學習算法
2. 評估核學習
3. 集成學習中的性能
4. 訓練神經網絡
5. 時間序列分析
6. 自然語言處理
7. 時間和序列模式發現
8. 概率圖模型
9. 深度學習中的選定主題
10. 因果推斷
11. 先進方法